Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.

Identifieur interne : 001472 ( Main/Exploration ); précédent : 001471; suivant : 001473

Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.

Auteurs : Fiona M. Soper [États-Unis] ; Anna E. Richards ; Ilyas Siddique ; Marcos P M. Aidar ; Garry D. Cook ; Lindsay B. Hutley ; Nicole Robinson ; Susanne Schmidt

Source :

RBID : pubmed:25502440

Descripteurs français

English descriptors

Abstract

Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ(15)N(root) xylem sap provides a more direct measure of plant N acquisition than δ(15)N(foliage). We found highly variable offsets between δ(15)N(foliage) and δ(15)N(root) xylem sap, both between taxa at a single site (1.3-3.4 ‰) and within taxa across sites (0.8-3.4 ‰). As a result, δ(15)N(foliage) overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ(15)N(root) xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ(15)N(root) xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ(15)N(soil) and/or decreasing mycorrhizal colonisation with aridity. We propose that δ(15)N(root) xylem sap is a more direct indicator of N source than δ(15)N(foliage), with calibration required before it could be applied to quantify BNF.

DOI: 10.1007/s00442-014-3176-3
PubMed: 25502440


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.</title>
<author>
<name sortKey="Soper, Fiona M" sort="Soper, Fiona M" uniqKey="Soper F" first="Fiona M" last="Soper">Fiona M. Soper</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA, fms46@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Anna E" sort="Richards, Anna E" uniqKey="Richards A" first="Anna E" last="Richards">Anna E. Richards</name>
</author>
<author>
<name sortKey="Siddique, Ilyas" sort="Siddique, Ilyas" uniqKey="Siddique I" first="Ilyas" last="Siddique">Ilyas Siddique</name>
</author>
<author>
<name sortKey="Aidar, Marcos P M" sort="Aidar, Marcos P M" uniqKey="Aidar M" first="Marcos P M" last="Aidar">Marcos P M. Aidar</name>
</author>
<author>
<name sortKey="Cook, Garry D" sort="Cook, Garry D" uniqKey="Cook G" first="Garry D" last="Cook">Garry D. Cook</name>
</author>
<author>
<name sortKey="Hutley, Lindsay B" sort="Hutley, Lindsay B" uniqKey="Hutley L" first="Lindsay B" last="Hutley">Lindsay B. Hutley</name>
</author>
<author>
<name sortKey="Robinson, Nicole" sort="Robinson, Nicole" uniqKey="Robinson N" first="Nicole" last="Robinson">Nicole Robinson</name>
</author>
<author>
<name sortKey="Schmidt, Susanne" sort="Schmidt, Susanne" uniqKey="Schmidt S" first="Susanne" last="Schmidt">Susanne Schmidt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25502440</idno>
<idno type="pmid">25502440</idno>
<idno type="doi">10.1007/s00442-014-3176-3</idno>
<idno type="wicri:Area/Main/Corpus">001619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001619</idno>
<idno type="wicri:Area/Main/Curation">001619</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001619</idno>
<idno type="wicri:Area/Main/Exploration">001619</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.</title>
<author>
<name sortKey="Soper, Fiona M" sort="Soper, Fiona M" uniqKey="Soper F" first="Fiona M" last="Soper">Fiona M. Soper</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA, fms46@cornell.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Anna E" sort="Richards, Anna E" uniqKey="Richards A" first="Anna E" last="Richards">Anna E. Richards</name>
</author>
<author>
<name sortKey="Siddique, Ilyas" sort="Siddique, Ilyas" uniqKey="Siddique I" first="Ilyas" last="Siddique">Ilyas Siddique</name>
</author>
<author>
<name sortKey="Aidar, Marcos P M" sort="Aidar, Marcos P M" uniqKey="Aidar M" first="Marcos P M" last="Aidar">Marcos P M. Aidar</name>
</author>
<author>
<name sortKey="Cook, Garry D" sort="Cook, Garry D" uniqKey="Cook G" first="Garry D" last="Cook">Garry D. Cook</name>
</author>
<author>
<name sortKey="Hutley, Lindsay B" sort="Hutley, Lindsay B" uniqKey="Hutley L" first="Lindsay B" last="Hutley">Lindsay B. Hutley</name>
</author>
<author>
<name sortKey="Robinson, Nicole" sort="Robinson, Nicole" uniqKey="Robinson N" first="Nicole" last="Robinson">Nicole Robinson</name>
</author>
<author>
<name sortKey="Schmidt, Susanne" sort="Schmidt, Susanne" uniqKey="Schmidt S" first="Susanne" last="Schmidt">Susanne Schmidt</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (growth & development)</term>
<term>Acacia (metabolism)</term>
<term>Australia (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Eucalyptus (growth & development)</term>
<term>Eucalyptus (metabolism)</term>
<term>Forests (MeSH)</term>
<term>Grassland (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Cycle (MeSH)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Nitrogen Isotopes (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Rain (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Trees (MeSH)</term>
<term>Water (MeSH)</term>
<term>Wood (metabolism)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acacia (croissance et développement)</term>
<term>Acacia (métabolisme)</term>
<term>Arbres (MeSH)</term>
<term>Australie (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Bois (métabolisme)</term>
<term>Cycle de l'azote (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Eucalyptus (croissance et développement)</term>
<term>Eucalyptus (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Fixation de l'azote (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Isotopes de l'azote (métabolisme)</term>
<term>Mycorhizes (MeSH)</term>
<term>Plantes (métabolisme)</term>
<term>Pluie (MeSH)</term>
<term>Prairie (MeSH)</term>
<term>Racines de plante (métabolisme)</term>
<term>Sol (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Xylème (métabolisme)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Acacia</term>
<term>Eucalyptus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Acacia</term>
<term>Eucalyptus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Acacia</term>
<term>Eucalyptus</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plants</term>
<term>Wood</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acacia</term>
<term>Azote</term>
<term>Bois</term>
<term>Eucalyptus</term>
<term>Feuilles de plante</term>
<term>Isotopes de l'azote</term>
<term>Plantes</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Australia</term>
<term>Droughts</term>
<term>Ecosystem</term>
<term>Forests</term>
<term>Grassland</term>
<term>Mycorrhizae</term>
<term>Nitrogen Cycle</term>
<term>Nitrogen Fixation</term>
<term>Rain</term>
<term>Soil</term>
<term>Trees</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Australie</term>
<term>Cycle de l'azote</term>
<term>Eau</term>
<term>Fixation de l'azote</term>
<term>Forêts</term>
<term>Mycorhizes</term>
<term>Pluie</term>
<term>Prairie</term>
<term>Sol</term>
<term>Sécheresses</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ(15)N(root) xylem sap provides a more direct measure of plant N acquisition than δ(15)N(foliage). We found highly variable offsets between δ(15)N(foliage) and δ(15)N(root) xylem sap, both between taxa at a single site (1.3-3.4 ‰) and within taxa across sites (0.8-3.4 ‰). As a result, δ(15)N(foliage) overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ(15)N(root) xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ(15)N(root) xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ(15)N(soil) and/or decreasing mycorrhizal colonisation with aridity. We propose that δ(15)N(root) xylem sap is a more direct indicator of N source than δ(15)N(foliage), with calibration required before it could be applied to quantify BNF.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25502440</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>178</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.</ArticleTitle>
<Pagination>
<MedlinePgn>297-308</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-014-3176-3</ELocationID>
<Abstract>
<AbstractText>Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ(15)N(root) xylem sap provides a more direct measure of plant N acquisition than δ(15)N(foliage). We found highly variable offsets between δ(15)N(foliage) and δ(15)N(root) xylem sap, both between taxa at a single site (1.3-3.4 ‰) and within taxa across sites (0.8-3.4 ‰). As a result, δ(15)N(foliage) overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ(15)N(root) xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ(15)N(root) xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ(15)N(soil) and/or decreasing mycorrhizal colonisation with aridity. We propose that δ(15)N(root) xylem sap is a more direct indicator of N source than δ(15)N(foliage), with calibration required before it could be applied to quantify BNF.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Soper</LastName>
<ForeName>Fiona M</ForeName>
<Initials>FM</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA, fms46@cornell.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Richards</LastName>
<ForeName>Anna E</ForeName>
<Initials>AE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Siddique</LastName>
<ForeName>Ilyas</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aidar</LastName>
<ForeName>Marcos P M</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cook</LastName>
<ForeName>Garry D</ForeName>
<Initials>GD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hutley</LastName>
<ForeName>Lindsay B</ForeName>
<Initials>LB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Robinson</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005052" MajorTopicYN="N">Eucalyptus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065948" MajorTopicYN="N">Grassland</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="Y">Nitrogen Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="Y">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011891" MajorTopicYN="Y">Rain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25502440</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-014-3176-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2009 Mar;159(3):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19034525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Dec;214(2):220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1992 Oct;7(10):336-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Nov;61(5):465-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jun;94(3):314-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Jul;87(2):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):889-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10585971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Feb;113(4):519-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Mar 1;16(3):153-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Aug;80(3):341-348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Feb;165(2):511-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22709428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Mar;134(4):569-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2001 Feb;5(1):62-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11178938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jan;38(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24890575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Mar;6(3):121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11239611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jun;18(6):403-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Nov 15;41(22):7661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18075071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Nov;88(3):451-455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Oct;141(2):221-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14986096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2001;15(15):1274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11466783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Mar;51(344):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938812</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Aidar, Marcos P M" sort="Aidar, Marcos P M" uniqKey="Aidar M" first="Marcos P M" last="Aidar">Marcos P M. Aidar</name>
<name sortKey="Cook, Garry D" sort="Cook, Garry D" uniqKey="Cook G" first="Garry D" last="Cook">Garry D. Cook</name>
<name sortKey="Hutley, Lindsay B" sort="Hutley, Lindsay B" uniqKey="Hutley L" first="Lindsay B" last="Hutley">Lindsay B. Hutley</name>
<name sortKey="Richards, Anna E" sort="Richards, Anna E" uniqKey="Richards A" first="Anna E" last="Richards">Anna E. Richards</name>
<name sortKey="Robinson, Nicole" sort="Robinson, Nicole" uniqKey="Robinson N" first="Nicole" last="Robinson">Nicole Robinson</name>
<name sortKey="Schmidt, Susanne" sort="Schmidt, Susanne" uniqKey="Schmidt S" first="Susanne" last="Schmidt">Susanne Schmidt</name>
<name sortKey="Siddique, Ilyas" sort="Siddique, Ilyas" uniqKey="Siddique I" first="Ilyas" last="Siddique">Ilyas Siddique</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Soper, Fiona M" sort="Soper, Fiona M" uniqKey="Soper F" first="Fiona M" last="Soper">Fiona M. Soper</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001472 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001472 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25502440
   |texte=   Natural abundance (δ¹⁵N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25502440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020