Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

Identifieur interne : 001277 ( Main/Exploration ); précédent : 001276; suivant : 001278

Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

Auteurs : Fayuan Wang [République populaire de Chine] ; Xueqin Liu [République populaire de Chine] ; Zhaoyong Shi [République populaire de Chine] ; Ruijian Tong [République populaire de Chine] ; Catharine A. Adams [États-Unis] ; Xiaojun Shi [République populaire de Chine]

Source :

RBID : pubmed:26761602

Descripteurs français

English descriptors

Abstract

ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.

DOI: 10.1016/j.chemosphere.2015.12.076
PubMed: 26761602


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.</title>
<author>
<name sortKey="Wang, Fayuan" sort="Wang, Fayuan" uniqKey="Wang F" first="Fayuan" last="Wang">Fayuan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China. Electronic address: wfy1975@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003</wicri:regionArea>
<wicri:noRegion>Luoyang 471003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xueqin" sort="Liu, Xueqin" uniqKey="Liu X" first="Xueqin" last="Liu">Xueqin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhaoyong" sort="Shi, Zhaoyong" uniqKey="Shi Z" first="Zhaoyong" last="Shi">Zhaoyong Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003</wicri:regionArea>
<wicri:noRegion>Luoyang 471003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Ruijian" sort="Tong, Ruijian" uniqKey="Tong R" first="Ruijian" last="Tong">Ruijian Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Life Science Department, Luoyang Normal University, Luoyang 471022, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Catharine A" sort="Adams, Catharine A" uniqKey="Adams C" first="Catharine A" last="Adams">Catharine A. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Microbial Biology Department, University of California Berkeley, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Microbial Biology Department, University of California Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Xiaojun" sort="Shi, Xiaojun" uniqKey="Shi X" first="Xiaojun" last="Shi">Xiaojun Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Southwest University, Chongqing 400716</wicri:regionArea>
<wicri:noRegion>Chongqing 400716</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26761602</idno>
<idno type="pmid">26761602</idno>
<idno type="doi">10.1016/j.chemosphere.2015.12.076</idno>
<idno type="wicri:Area/Main/Corpus">001213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001213</idno>
<idno type="wicri:Area/Main/Curation">001213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001213</idno>
<idno type="wicri:Area/Main/Exploration">001213</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.</title>
<author>
<name sortKey="Wang, Fayuan" sort="Wang, Fayuan" uniqKey="Wang F" first="Fayuan" last="Wang">Fayuan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China. Electronic address: wfy1975@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003</wicri:regionArea>
<wicri:noRegion>Luoyang 471003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xueqin" sort="Liu, Xueqin" uniqKey="Liu X" first="Xueqin" last="Liu">Xueqin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhaoyong" sort="Shi, Zhaoyong" uniqKey="Shi Z" first="Zhaoyong" last="Shi">Zhaoyong Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Agricultural College, Henan University of Science and Technology, Luoyang 471003</wicri:regionArea>
<wicri:noRegion>Luoyang 471003</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Ruijian" sort="Tong, Ruijian" uniqKey="Tong R" first="Ruijian" last="Tong">Ruijian Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Life Science Department, Luoyang Normal University, Luoyang 471022, Henan</wicri:regionArea>
<wicri:noRegion>Henan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Catharine A" sort="Adams, Catharine A" uniqKey="Adams C" first="Catharine A" last="Adams">Catharine A. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Microbial Biology Department, University of California Berkeley, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Microbial Biology Department, University of California Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Xiaojun" sort="Shi, Xiaojun" uniqKey="Shi X" first="Xiaojun" last="Shi">Xiaojun Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Southwest University, Chongqing 400716</wicri:regionArea>
<wicri:noRegion>Chongqing 400716</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glomeromycota (physiology)</term>
<term>Metal Nanoparticles (toxicity)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (drug effects)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (pharmacokinetics)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Zea mays (drug effects)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (metabolism)</term>
<term>Zea mays (microbiology)</term>
<term>Zinc (pharmacokinetics)</term>
<term>Zinc (toxicity)</term>
<term>Zinc Oxide (pharmacokinetics)</term>
<term>Zinc Oxide (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glomeromycota (physiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Nanoparticules métalliques (toxicité)</term>
<term>Oxyde de zinc (pharmacocinétique)</term>
<term>Oxyde de zinc (toxicité)</term>
<term>Polluants du sol (pharmacocinétique)</term>
<term>Polluants du sol (toxicité)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (effets des médicaments et des substances chimiques)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Zea mays (croissance et développement)</term>
<term>Zea mays (effets des médicaments et des substances chimiques)</term>
<term>Zea mays (microbiologie)</term>
<term>Zea mays (métabolisme)</term>
<term>Zinc (pharmacocinétique)</term>
<term>Zinc (toxicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Superoxide dismutase</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Oxyde de zinc</term>
<term>Polluants du sol</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Soil Pollutants</term>
<term>Zinc</term>
<term>Zinc Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Soil Pollutants</term>
<term>Zinc</term>
<term>Zinc Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Nanoparticules métalliques</term>
<term>Oxyde de zinc</term>
<term>Polluants du sol</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microbiologie du sol</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">26761602</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>147</Volume>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.</ArticleTitle>
<Pagination>
<MedlinePgn>88-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2015.12.076</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(15)30530-0</ELocationID>
<Abstract>
<AbstractText>ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Fayuan</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China. Electronic address: wfy1975@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xueqin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China; College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China; Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Zhaoyong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Agricultural College, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Ruijian</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Life Science Department, Luoyang Normal University, Luoyang 471022, Henan, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Catharine A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Plant and Microbial Biology Department, University of California Berkeley, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Xiaojun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, Southwest University, Chongqing 400716, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SOI2LOH54Z</RegistryNumber>
<NameOfSubstance UI="D015034">Zinc Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015034" MajorTopicYN="N">Zinc Oxide</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Maize</Keyword>
<Keyword MajorTopicYN="N">Phytotoxicity</Keyword>
<Keyword MajorTopicYN="N">ZnO nanoparticles</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26761602</ArticleId>
<ArticleId IdType="pii">S0045-6535(15)30530-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2015.12.076</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Fayuan" sort="Wang, Fayuan" uniqKey="Wang F" first="Fayuan" last="Wang">Fayuan Wang</name>
</noRegion>
<name sortKey="Liu, Xueqin" sort="Liu, Xueqin" uniqKey="Liu X" first="Xueqin" last="Liu">Xueqin Liu</name>
<name sortKey="Shi, Xiaojun" sort="Shi, Xiaojun" uniqKey="Shi X" first="Xiaojun" last="Shi">Xiaojun Shi</name>
<name sortKey="Shi, Zhaoyong" sort="Shi, Zhaoyong" uniqKey="Shi Z" first="Zhaoyong" last="Shi">Zhaoyong Shi</name>
<name sortKey="Tong, Ruijian" sort="Tong, Ruijian" uniqKey="Tong R" first="Ruijian" last="Tong">Ruijian Tong</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Adams, Catharine A" sort="Adams, Catharine A" uniqKey="Adams C" first="Catharine A" last="Adams">Catharine A. Adams</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001277 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001277 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26761602
   |texte=   Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26761602" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020