Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

Identifieur interne : 001276 ( Main/Exploration ); précédent : 001275; suivant : 001277

Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

Auteurs : P P Mirshad [Inde] ; Jos T. Puthur [Inde]

Source :

RBID : pubmed:27329476

Descripteurs français

English descriptors

Abstract

The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

DOI: 10.1007/s10661-016-5428-7
PubMed: 27329476


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).</title>
<author>
<name sortKey="Mirshad, P P" sort="Mirshad, P P" uniqKey="Mirshad P" first="P P" last="Mirshad">P P Mirshad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635</wicri:regionArea>
<wicri:noRegion>673635</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puthur, Jos T" sort="Puthur, Jos T" uniqKey="Puthur J" first="Jos T" last="Puthur">Jos T. Puthur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India. jtputhur@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635</wicri:regionArea>
<wicri:noRegion>673635</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27329476</idno>
<idno type="pmid">27329476</idno>
<idno type="doi">10.1007/s10661-016-5428-7</idno>
<idno type="wicri:Area/Main/Corpus">001021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001021</idno>
<idno type="wicri:Area/Main/Curation">001021</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001021</idno>
<idno type="wicri:Area/Main/Exploration">001021</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).</title>
<author>
<name sortKey="Mirshad, P P" sort="Mirshad, P P" uniqKey="Mirshad P" first="P P" last="Mirshad">P P Mirshad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635</wicri:regionArea>
<wicri:noRegion>673635</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puthur, Jos T" sort="Puthur, Jos T" uniqKey="Puthur J" first="Jos T" last="Puthur">Jos T. Puthur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India. jtputhur@yahoo.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635</wicri:regionArea>
<wicri:noRegion>673635</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental monitoring and assessment</title>
<idno type="eISSN">1573-2959</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Biofuels (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Chlorophyll (metabolism)</term>
<term>Droughts (MeSH)</term>
<term>Environmental Monitoring (methods)</term>
<term>Glutathione (metabolism)</term>
<term>Lipid Peroxidation (physiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Phenols (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Saccharum (growth & development)</term>
<term>Saccharum (metabolism)</term>
<term>Saccharum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (métabolisme)</term>
<term>Antioxydants (métabolisme)</term>
<term>Biocarburants (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Peroxydation lipidique (physiologie)</term>
<term>Photosynthèse (physiologie)</term>
<term>Phénols (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Saccharum (croissance et développement)</term>
<term>Saccharum (microbiologie)</term>
<term>Saccharum (métabolisme)</term>
<term>Surveillance de l'environnement (méthodes)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Ascorbic Acid</term>
<term>Chlorophyll</term>
<term>Glutathione</term>
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
<term>Racines de plante</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Antioxydants</term>
<term>Chlorophylle</term>
<term>Glutathion</term>
<term>Phénols</term>
<term>Racines de plante</term>
<term>Saccharum</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Surveillance de l'environnement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Peroxydation lipidique</term>
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lipid Peroxidation</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Droughts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocarburants</term>
<term>Biomasse</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">27329476</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-2959</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>188</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Environmental monitoring and assessment</Title>
<ISOAbbreviation>Environ Monit Assess</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).</ArticleTitle>
<Pagination>
<MedlinePgn>425</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10661-016-5428-7</ELocationID>
<Abstract>
<AbstractText>The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mirshad</LastName>
<ForeName>P P</ForeName>
<Initials>PP</Initials>
<AffiliationInfo>
<Affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puthur</LastName>
<ForeName>Jos T</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Malappuram, Kerala, 673635, India. jtputhur@yahoo.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Monit Assess</MedlineTA>
<NlmUniqueID>8508350</NlmUniqueID>
<ISSNLinking>0167-6369</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="Y">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031786" MajorTopicYN="N">Saccharum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Bioenergy grasses</Keyword>
<Keyword MajorTopicYN="N">Chl a fluorescence</Keyword>
<Keyword MajorTopicYN="N">Osmolytes</Keyword>
<Keyword MajorTopicYN="N">Photosystem</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27329476</ArticleId>
<ArticleId IdType="doi">10.1007/s10661-016-5428-7</ArticleId>
<ArticleId IdType="pii">10.1007/s10661-016-5428-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1949 Jan;24(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Sep 1;140(1):46-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Nov;21(8):703-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21472449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Oct;22(7):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22349921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91 Spec No:179-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2015 Jun;187(6):311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25934052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):596-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2012;2012:303748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23097596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Apr;125(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5655425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 Feb;25(2):143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(7):1970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1951 Nov;193(1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14907713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 May 1;169(7):704-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22418429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Jul;116:536-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22595099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Dec 05;5:682</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Mirshad, P P" sort="Mirshad, P P" uniqKey="Mirshad P" first="P P" last="Mirshad">P P Mirshad</name>
</noRegion>
<name sortKey="Puthur, Jos T" sort="Puthur, Jos T" uniqKey="Puthur J" first="Jos T" last="Puthur">Jos T. Puthur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27329476
   |texte=   Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27329476" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020