Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

Identifieur interne : 001027 ( Main/Exploration ); précédent : 001026; suivant : 001028

Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

Auteurs : Ellen K. Holste ; Karen D. Holl ; Rakan A. Zahawi ; Richard K. Kobe

Source :

RBID : pubmed:28725395

Abstract

Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

DOI: 10.1002/ece3.2487
PubMed: 28725395
PubMed Central: PMC5513279


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.</title>
<author>
<name sortKey="Holste, Ellen K" sort="Holste, Ellen K" uniqKey="Holste E" first="Ellen K" last="Holste">Ellen K. Holste</name>
<affiliation>
<nlm:affiliation>Department of Forestry Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Forestry Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Holl, Karen D" sort="Holl, Karen D" uniqKey="Holl K" first="Karen D" last="Holl">Karen D. Holl</name>
<affiliation>
<nlm:affiliation>Environmental Studies Department University of California Santa Cruz CA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Environmental Studies Department University of California Santa Cruz CA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zahawi, Rakan A" sort="Zahawi, Rakan A" uniqKey="Zahawi R" first="Rakan A" last="Zahawi">Rakan A. Zahawi</name>
<affiliation>
<nlm:affiliation>Las Cruces Biological Station Organization for Tropical Studies San Vito Costa Rica.</nlm:affiliation>
<wicri:noCountry code="no comma">Las Cruces Biological Station Organization for Tropical Studies San Vito Costa Rica.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kobe, Richard K" sort="Kobe, Richard K" uniqKey="Kobe R" first="Richard K" last="Kobe">Richard K. Kobe</name>
<affiliation>
<nlm:affiliation>Department of Forestry Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Forestry Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:28725395</idno>
<idno type="pmid">28725395</idno>
<idno type="doi">10.1002/ece3.2487</idno>
<idno type="pmc">PMC5513279</idno>
<idno type="wicri:Area/Main/Corpus">000C02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C02</idno>
<idno type="wicri:Area/Main/Curation">000C02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C02</idno>
<idno type="wicri:Area/Main/Exploration">000C02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.</title>
<author>
<name sortKey="Holste, Ellen K" sort="Holste, Ellen K" uniqKey="Holste E" first="Ellen K" last="Holste">Ellen K. Holste</name>
<affiliation>
<nlm:affiliation>Department of Forestry Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Forestry Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Holl, Karen D" sort="Holl, Karen D" uniqKey="Holl K" first="Karen D" last="Holl">Karen D. Holl</name>
<affiliation>
<nlm:affiliation>Environmental Studies Department University of California Santa Cruz CA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Environmental Studies Department University of California Santa Cruz CA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zahawi, Rakan A" sort="Zahawi, Rakan A" uniqKey="Zahawi R" first="Rakan A" last="Zahawi">Rakan A. Zahawi</name>
<affiliation>
<nlm:affiliation>Las Cruces Biological Station Organization for Tropical Studies San Vito Costa Rica.</nlm:affiliation>
<wicri:noCountry code="no comma">Las Cruces Biological Station Organization for Tropical Studies San Vito Costa Rica.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kobe, Richard K" sort="Kobe, Richard K" uniqKey="Kobe R" first="Richard K" last="Kobe">Richard K. Kobe</name>
<affiliation>
<nlm:affiliation>Department of Forestry Michigan State University East Lansing MI USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Forestry Michigan State University East Lansing MI USA.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (
<i>Inga edulis, Erythrina poeppigiana, Terminalia amazonia,</i>
and
<i>Vochysia guatemalensis</i>
) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus
<i>Glomus</i>
and genus
<i>Acaulospora</i>
, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28725395</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2016</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.</ArticleTitle>
<Pagination>
<MedlinePgn>7253-7262</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.2487</ELocationID>
<Abstract>
<AbstractText>Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (
<i>Inga edulis, Erythrina poeppigiana, Terminalia amazonia,</i>
and
<i>Vochysia guatemalensis</i>
) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus
<i>Glomus</i>
and genus
<i>Acaulospora</i>
, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Holste</LastName>
<ForeName>Ellen K</ForeName>
<Initials>EK</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry Michigan State University East Lansing MI USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holl</LastName>
<ForeName>Karen D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Environmental Studies Department University of California Santa Cruz CA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zahawi</LastName>
<ForeName>Rakan A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Las Cruces Biological Station Organization for Tropical Studies San Vito Costa Rica.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kobe</LastName>
<ForeName>Richard K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry Michigan State University East Lansing MI USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">forest recovery</Keyword>
<Keyword MajorTopicYN="Y">land use history</Keyword>
<Keyword MajorTopicYN="Y">mycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">plant–soil interactions</Keyword>
<Keyword MajorTopicYN="Y">productivity–diversity relationship</Keyword>
<Keyword MajorTopicYN="Y">spore production</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28725395</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.2487</ArticleId>
<ArticleId IdType="pii">ECE32487</ArticleId>
<ArticleId IdType="pmc">PMC5513279</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1339260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Apr;72(1):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2014 Dec;20(12):3646-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24764217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 23;10(11):e0143554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26599325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Nov;25(11):670-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20888063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Dec;11(12):2669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2001 Jul;36(2-3):203-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11451525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Dec;12(6):297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 May;16(5):382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Apr;135(2):268-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12698349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Mar;7(3):498-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23096401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):255-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20645112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):14-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2008 Aug;65(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 May 1;48(2):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21294738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22606282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jan;12(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Apr;90(4):1125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Jul;8(7):1548-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24641509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Sep;73(17):5613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Aug;12(8):2165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Holl, Karen D" sort="Holl, Karen D" uniqKey="Holl K" first="Karen D" last="Holl">Karen D. Holl</name>
<name sortKey="Holste, Ellen K" sort="Holste, Ellen K" uniqKey="Holste E" first="Ellen K" last="Holste">Ellen K. Holste</name>
<name sortKey="Kobe, Richard K" sort="Kobe, Richard K" uniqKey="Kobe R" first="Richard K" last="Kobe">Richard K. Kobe</name>
<name sortKey="Zahawi, Rakan A" sort="Zahawi, Rakan A" uniqKey="Zahawi R" first="Rakan A" last="Zahawi">Rakan A. Zahawi</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001027 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001027 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28725395
   |texte=   Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28725395" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020