Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

Identifieur interne : 000C01 ( Main/Curation ); précédent : 000C00; suivant : 000C02

The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

Auteurs : Achref Aloui [France, Tunisie] ; Ghislaine Recorbet [France] ; Christelle Lemaître-Guillier [France] ; Arnaud Mounier [France] ; Thierry Balliau [France] ; Michel Zivy [France] ; Daniel Wipf [France] ; Eliane Dumas-Gaudot [France]

Source :

RBID : pubmed:28725961

Descripteurs français

English descriptors

Abstract

In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

DOI: 10.1007/s00572-017-0789-5
PubMed: 28725961

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28725961

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Aloui, Achref" sort="Aloui, Achref" uniqKey="Aloui A" first="Achref" last="Aloui">Achref Aloui</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Recorbet, Ghislaine" sort="Recorbet, Ghislaine" uniqKey="Recorbet G" first="Ghislaine" last="Recorbet">Ghislaine Recorbet</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France. ghislaine.recorbet@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lemaitre Guillier, Christelle" sort="Lemaitre Guillier, Christelle" uniqKey="Lemaitre Guillier C" first="Christelle" last="Lemaître-Guillier">Christelle Lemaître-Guillier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mounier, Arnaud" sort="Mounier, Arnaud" uniqKey="Mounier A" first="Arnaud" last="Mounier">Arnaud Mounier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Balliau, Thierry" sort="Balliau, Thierry" uniqKey="Balliau T" first="Thierry" last="Balliau">Thierry Balliau</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zivy, Michel" sort="Zivy, Michel" uniqKey="Zivy M" first="Michel" last="Zivy">Michel Zivy</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wipf, Daniel" sort="Wipf, Daniel" uniqKey="Wipf D" first="Daniel" last="Wipf">Daniel Wipf</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dumas Gaudot, Eliane" sort="Dumas Gaudot, Eliane" uniqKey="Dumas Gaudot E" first="Eliane" last="Dumas-Gaudot">Eliane Dumas-Gaudot</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28725961</idno>
<idno type="pmid">28725961</idno>
<idno type="doi">10.1007/s00572-017-0789-5</idno>
<idno type="wicri:Area/Main/Corpus">000C01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C01</idno>
<idno type="wicri:Area/Main/Curation">000C01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Aloui, Achref" sort="Aloui, Achref" uniqKey="Aloui A" first="Achref" last="Aloui">Achref Aloui</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Recorbet, Ghislaine" sort="Recorbet, Ghislaine" uniqKey="Recorbet G" first="Ghislaine" last="Recorbet">Ghislaine Recorbet</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France. ghislaine.recorbet@inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lemaitre Guillier, Christelle" sort="Lemaitre Guillier, Christelle" uniqKey="Lemaitre Guillier C" first="Christelle" last="Lemaître-Guillier">Christelle Lemaître-Guillier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mounier, Arnaud" sort="Mounier, Arnaud" uniqKey="Mounier A" first="Arnaud" last="Mounier">Arnaud Mounier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Balliau, Thierry" sort="Balliau, Thierry" uniqKey="Balliau T" first="Thierry" last="Balliau">Thierry Balliau</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zivy, Michel" sort="Zivy, Michel" uniqKey="Zivy M" first="Michel" last="Zivy">Michel Zivy</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wipf, Daniel" sort="Wipf, Daniel" uniqKey="Wipf D" first="Daniel" last="Wipf">Daniel Wipf</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dumas Gaudot, Eliane" sort="Dumas Gaudot, Eliane" uniqKey="Dumas Gaudot E" first="Eliane" last="Dumas-Gaudot">Eliane Dumas-Gaudot</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Membrane (genetics)</term>
<term>Cell Membrane (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glomeromycota (physiologie)</term>
<term>Medicago truncatula (génétique)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Medicago truncatula (métabolisme)</term>
<term>Membrane cellulaire (génétique)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Racines de plante (métabolisme)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Membrane</term>
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Membrane cellulaire</term>
<term>Protéines membranaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Medicago truncatula</term>
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Membrane cellulaire</term>
<term>Protéines membranaires</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Protéome</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28725961</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>1-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-017-0789-5</ELocationID>
<Abstract>
<AbstractText>In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aloui</LastName>
<ForeName>Achref</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Recorbet</LastName>
<ForeName>Ghislaine</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4668-4201</Identifier>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France. ghislaine.recorbet@inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lemaître-Guillier</LastName>
<ForeName>Christelle</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mounier</LastName>
<ForeName>Arnaud</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Balliau</LastName>
<ForeName>Thierry</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zivy</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wipf</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dumas-Gaudot</LastName>
<ForeName>Eliane</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Medicago truncatula</Keyword>
<Keyword MajorTopicYN="N">Proteomics</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus irregularis</Keyword>
<Keyword MajorTopicYN="N">Root plasma membrane proteins</Keyword>
<Keyword MajorTopicYN="N">Spectral counting</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28725961</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-017-0789-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-017-0789-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2008;59(9):2479-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Mar;9(3):431-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4680-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25527707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Aug;13(8):1090-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):402-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 03;5:436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25232358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2016 Sep;108(5):1028-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Apr;6 Suppl 1:S145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16511816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6765-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25329881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1006-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21562330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Mar;66(6):1553-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25697794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Nov;4(11):439-445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10529825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Mar 4;15(3):900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26781341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 14;280(2):1594-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Nov;11(11):1156-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Jan;53(1):244-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 29;280(30):27578-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(15):4061-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25168837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Nov;21(11):937-950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Jul;85(4-5):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24817131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 01;7:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(1):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 22;5:735</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25566303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2002 Jan;23(1):122-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11824612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Oct 05;3:223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23060892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:101-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28521260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2012;2012:494572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 May;11(9):1780-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21433285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Oct;8(19):3924-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18763712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Apr;11(4):M111.014555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipid Insights. 2016 Feb 29;8(Suppl 1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26949334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Aug 28;108:354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24925269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):204-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1631-1645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jan 18;2:15208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Aug;22(8):652-660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2008 Sep;47(5):381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Sep;26(9):705-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15793072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Dec;1808(12):2981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21819967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 11;4:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Sep;5(9):2339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16944946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Sep;68(3):548-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2016 Dec 15;143(24):4687-4700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27836964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 27;165(3):1156-1170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24868033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jun;78(5):877-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24654931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 May;14 (5):1301-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(10):e970426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):856-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Dec;15(6):691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 04;5:237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Sep;13(9):492-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Jul 27;1:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Oct;213(6):864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 08;5:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24782872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Oct 14;32(18):5539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 22;109(21):8316-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22566631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Apr;7(4):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22499167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Nov;280(22):5626-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Sep 30;14:255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25267185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Apr;203-204:74-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 07;14:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Aug 17;25(16):2189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26234213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 02;5:238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24917869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Nov;59(4):565-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2002 Dec;11(12):2836-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12441382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23882074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000C01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28725961
   |texte=   The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:28725961" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020