Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.

Identifieur interne : 002B39 ( Main/Corpus ); précédent : 002B38; suivant : 002B40

Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.

Auteurs : Caiyan Chen ; Cui Fan ; Muqiang Gao ; Hongyan Zhu

Source :

RBID : pubmed:18978069

English descriptors

Abstract

Root symbioses with arbuscular mycorrhizal fungi and rhizobial bacteria share a common signaling pathway in legumes. Among the common symbiosis genes are CASTOR and POLLUX, the twin homologous genes in Lotus japonicus that encode putative ion channel proteins. Here, we show that the orthologs of CASTOR and POLLUX are ubiquitously present and highly conserved in both legumes and nonlegumes. Using rice (Oryza sativa) as a study system, we employ reverse genetic tools (knockout mutants and RNA interference) to demonstrate that Os-CASTOR and Os-POLLUX are indispensable for mycorrhizal symbiosis in rice. Furthermore, a cross-species complementation test indicates that Os-POLLUX can restore nodulation, but not rhizobial infection, to a Medicago truncatula dmi1 mutant.

DOI: 10.1104/pp.108.131540
PubMed: 18978069
PubMed Central: PMC2613720

Links to Exploration step

pubmed:18978069

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.</title>
<author>
<name sortKey="Chen, Caiyan" sort="Chen, Caiyan" uniqKey="Chen C" first="Caiyan" last="Chen">Caiyan Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Cui" sort="Fan, Cui" uniqKey="Fan C" first="Cui" last="Fan">Cui Fan</name>
</author>
<author>
<name sortKey="Gao, Muqiang" sort="Gao, Muqiang" uniqKey="Gao M" first="Muqiang" last="Gao">Muqiang Gao</name>
</author>
<author>
<name sortKey="Zhu, Hongyan" sort="Zhu, Hongyan" uniqKey="Zhu H" first="Hongyan" last="Zhu">Hongyan Zhu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18978069</idno>
<idno type="pmid">18978069</idno>
<idno type="doi">10.1104/pp.108.131540</idno>
<idno type="pmc">PMC2613720</idno>
<idno type="wicri:Area/Main/Corpus">002B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.</title>
<author>
<name sortKey="Chen, Caiyan" sort="Chen, Caiyan" uniqKey="Chen C" first="Caiyan" last="Chen">Caiyan Chen</name>
<affiliation>
<nlm:affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Cui" sort="Fan, Cui" uniqKey="Fan C" first="Cui" last="Fan">Cui Fan</name>
</author>
<author>
<name sortKey="Gao, Muqiang" sort="Gao, Muqiang" uniqKey="Gao M" first="Muqiang" last="Gao">Muqiang Gao</name>
</author>
<author>
<name sortKey="Zhu, Hongyan" sort="Zhu, Hongyan" uniqKey="Zhu H" first="Hongyan" last="Zhu">Hongyan Zhu</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Oryza (microbiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Plant (genetics)</term>
<term>Root Nodules, Plant (microbiology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Plant Proteins</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Medicago truncatula</term>
<term>Oryza</term>
<term>Plant Proteins</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Knockout Techniques</term>
<term>Genes, Plant</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Insertional</term>
<term>Phylogeny</term>
<term>RNA Interference</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root symbioses with arbuscular mycorrhizal fungi and rhizobial bacteria share a common signaling pathway in legumes. Among the common symbiosis genes are CASTOR and POLLUX, the twin homologous genes in Lotus japonicus that encode putative ion channel proteins. Here, we show that the orthologs of CASTOR and POLLUX are ubiquitously present and highly conserved in both legumes and nonlegumes. Using rice (Oryza sativa) as a study system, we employ reverse genetic tools (knockout mutants and RNA interference) to demonstrate that Os-CASTOR and Os-POLLUX are indispensable for mycorrhizal symbiosis in rice. Furthermore, a cross-species complementation test indicates that Os-POLLUX can restore nodulation, but not rhizobial infection, to a Medicago truncatula dmi1 mutant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18978069</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>149</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>306-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.131540</ELocationID>
<Abstract>
<AbstractText>Root symbioses with arbuscular mycorrhizal fungi and rhizobial bacteria share a common signaling pathway in legumes. Among the common symbiosis genes are CASTOR and POLLUX, the twin homologous genes in Lotus japonicus that encode putative ion channel proteins. Here, we show that the orthologs of CASTOR and POLLUX are ubiquitously present and highly conserved in both legumes and nonlegumes. Using rice (Oryza sativa) as a study system, we employ reverse genetic tools (knockout mutants and RNA interference) to demonstrate that Os-CASTOR and Os-POLLUX are indispensable for mycorrhizal symbiosis in rice. Furthermore, a cross-species complementation test indicates that Os-POLLUX can restore nodulation, but not rhizobial infection, to a Medicago truncatula dmi1 mutant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Caiyan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Cui</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Muqiang</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Hongyan</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18978069</ArticleId>
<ArticleId IdType="pii">pp.108.131540</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.131540</ArticleId>
<ArticleId IdType="pmc">PMC2613720</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Oct;20(10):1183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1871-1883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4928-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Aug;5(8):619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):311-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18761634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:257-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 May 31;85(5):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8646776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Jun;97(6):925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):610-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1636-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):912-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Aug;6(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4701-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Mar;63(5):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Apr;9(2):110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16458572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Oct;13(10):1109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11043472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Jun;41(6):726-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10945342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1899-1913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):671-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Jul;5(7):566-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Jan 17;345(1):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Nov 11;402(6758):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jan 15;18(2):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1957 Apr;16(2):374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13416514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 30;417(6888):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 4;6(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002B39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18978069
   |texte=   Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:18978069" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020