Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.

Identifieur interne : 002A80 ( Main/Corpus ); précédent : 002A79; suivant : 002A81

Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.

Auteurs : Daniel Croll ; Ian R. Sanders

Source :

RBID : pubmed:19146661

English descriptors

Abstract

BACKGROUND

Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory.

RESULTS

We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences.

CONCLUSION

Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.


DOI: 10.1186/1471-2148-9-13
PubMed: 19146661
PubMed Central: PMC2630297

Links to Exploration step

pubmed:19146661

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.</title>
<author>
<name sortKey="Croll, Daniel" sort="Croll, Daniel" uniqKey="Croll D" first="Daniel" last="Croll">Daniel Croll</name>
<affiliation>
<nlm:affiliation>Department of Ecology & Evolution, Biophore building, University of Lausanne, Lausanne, Switzerland.daniel.croll@unil.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanders, Ian R" sort="Sanders, Ian R" uniqKey="Sanders I" first="Ian R" last="Sanders">Ian R. Sanders</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19146661</idno>
<idno type="pmid">19146661</idno>
<idno type="doi">10.1186/1471-2148-9-13</idno>
<idno type="pmc">PMC2630297</idno>
<idno type="wicri:Area/Main/Corpus">002A80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.</title>
<author>
<name sortKey="Croll, Daniel" sort="Croll, Daniel" uniqKey="Croll D" first="Daniel" last="Croll">Daniel Croll</name>
<affiliation>
<nlm:affiliation>Department of Ecology & Evolution, Biophore building, University of Lausanne, Lausanne, Switzerland.daniel.croll@unil.ch</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanders, Ian R" sort="Sanders, Ian R" uniqKey="Sanders I" first="Ian R" last="Sanders">Ian R. Sanders</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Fungal (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glomeromycota (genetics)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Polymorphism, Genetic (MeSH)</term>
<term>Recombination, Genetic (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Genome, Fungal</term>
<term>Genotype</term>
<term>Phylogeny</term>
<term>Polymorphism, Genetic</term>
<term>Recombination, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19146661</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>01</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.</ArticleTitle>
<Pagination>
<MedlinePgn>13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-9-13</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Croll</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology & Evolution, Biophore building, University of Lausanne, Lausanne, Switzerland.daniel.croll@unil.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanders</LastName>
<ForeName>Ian R</ForeName>
<Initials>IR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="Y">Recombination, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19146661</ArticleId>
<ArticleId IdType="pii">1471-2148-9-13</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-9-13</ArticleId>
<ArticleId IdType="pmc">PMC2630297</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 2004 Feb;41(2):253-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2002;36:75-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12429687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2001 Aug;87(Pt 2):243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11703516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Apr;18(4):676-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 May 11;20(9):2380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1594460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1992 Feb;34(2):126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1556748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):733-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Dec;65(12):5571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):616-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):388-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):754-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Dec 13;414(6865):745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10702-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 27;437(7063):1360-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Feb;9(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2665-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Feb;14(1):63-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14689288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1997;31:245-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9442896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):253-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):E3-4; discussion E4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jan;73(1):366-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2004 Feb;53(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Feb;21(2):255-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1989 Sep;6(5):526-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2677599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(3):465-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(3):672-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2003 Feb 19;4:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12689349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9067-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Oct;12(5):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12375133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 1995 Nov;11(11):1423-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8573403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 May;19(5):708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11961104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):770-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8570632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):564-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Jun;16(6):562-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10980155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):254-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Nov 27-Dec 3;324(6095):300-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3785401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Mar;14(3):743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Dec 20;265(2):218-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006;6:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16529655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1996 Feb;11(2):41-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 12;15(13):1242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19146661
   |texte=   Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19146661" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020