Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Terrestrial orchid conservation in the age of extinction.

Identifieur interne : 002A48 ( Main/Corpus ); précédent : 002A47; suivant : 002A49

Terrestrial orchid conservation in the age of extinction.

Auteurs : Nigel D. Swarts ; Kingsley W. Dixon

Source :

RBID : pubmed:19218582

English descriptors

Abstract

BACKGROUND

Conservation through reserves alone is now considered unlikely to achieve protection of plant species necessary to mitigate direct losses of habitat and the pervasive impact of global climate change. Assisted translocation/migration represent new challenges in the face of climate change; species, particularly orchids, will need artificial assistance to migrate from hostile environments, across ecological barriers (alienated lands such as farmlands and built infrastructure) to new climatically buffered sites. The technology and science to underpin assisted migration concepts are in their infancy for plants in general, and orchids, with their high degree of rarity, represent a particularly challenging group for which these principles need to be developed. It is likely that orchids, more than any other plant family, will be in the front-line of species to suffer large-scale extinction events as a result of climate change.

SCOPE

The South West Australian Floristic Region (SWAFR) is the only global biodiversity hotspot in Australia and represents an ideal test-bed for development of orchid conservation principles. Orchids comprise 6 % of all threatened vascular plants in the SWAFR, with 76 out of the 407 species known for the region having a high level of conservation risk. The situation in the SWAFR is a portent of the global crisis in terrestrial orchid conservation, and it is a region where innovative conservation solutions will be required if the impending wave of extinction is to be averted. Major threatening processes are varied, and include land clearance, salinity, burning, weed encroachment, disease and pests. This is compounded by highly specialized pollinators (locally endemic native invertebrates) and, in the most threatened groups such as hammer orchids (Drakaea) and spider orchids (Caladenia), high levels of mycorrhizal specialization. Management and development of effective conservation strategies for SWAFR orchids require a wide range of integrated scientific approaches to mitigate impacts that directly influence ecological traits critical for survival.

CONCLUSIONS

In response to threats to orchid species, integrated conservation approaches have been adopted (including ex situ and translocation principles) in the SWAFR with the result that a significant, multidisciplinary approach is under development to facilitate conservation of some of the most threatened taxa and build expertise to carry out assisted migration to new sites. Here the past two decades of orchid conservation research in the SWAFR and the role of research-based approaches for managing effective orchid conservation in a global biodiversity hotspot are reviewed.


DOI: 10.1093/aob/mcp025
PubMed: 19218582
PubMed Central: PMC2720663

Links to Exploration step

pubmed:19218582

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Terrestrial orchid conservation in the age of extinction.</title>
<author>
<name sortKey="Swarts, Nigel D" sort="Swarts, Nigel D" uniqKey="Swarts N" first="Nigel D" last="Swarts">Nigel D. Swarts</name>
<affiliation>
<nlm:affiliation>Kings Park and Botanic Garden, West Perth, WA 6005, Australia. Nigel.Swarts@bgpa.wa.gov.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, Kingsley W" sort="Dixon, Kingsley W" uniqKey="Dixon K" first="Kingsley W" last="Dixon">Kingsley W. Dixon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19218582</idno>
<idno type="pmid">19218582</idno>
<idno type="doi">10.1093/aob/mcp025</idno>
<idno type="pmc">PMC2720663</idno>
<idno type="wicri:Area/Main/Corpus">002A48</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Terrestrial orchid conservation in the age of extinction.</title>
<author>
<name sortKey="Swarts, Nigel D" sort="Swarts, Nigel D" uniqKey="Swarts N" first="Nigel D" last="Swarts">Nigel D. Swarts</name>
<affiliation>
<nlm:affiliation>Kings Park and Botanic Garden, West Perth, WA 6005, Australia. Nigel.Swarts@bgpa.wa.gov.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dixon, Kingsley W" sort="Dixon, Kingsley W" uniqKey="Dixon K" first="Kingsley W" last="Dixon">Kingsley W. Dixon</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Conservation of Natural Resources (MeSH)</term>
<term>Extinction, Biological (MeSH)</term>
<term>Germination (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Orchidaceae (microbiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Conservation of Natural Resources</term>
<term>Extinction, Biological</term>
<term>Germination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Conservation through reserves alone is now considered unlikely to achieve protection of plant species necessary to mitigate direct losses of habitat and the pervasive impact of global climate change. Assisted translocation/migration represent new challenges in the face of climate change; species, particularly orchids, will need artificial assistance to migrate from hostile environments, across ecological barriers (alienated lands such as farmlands and built infrastructure) to new climatically buffered sites. The technology and science to underpin assisted migration concepts are in their infancy for plants in general, and orchids, with their high degree of rarity, represent a particularly challenging group for which these principles need to be developed. It is likely that orchids, more than any other plant family, will be in the front-line of species to suffer large-scale extinction events as a result of climate change.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SCOPE</b>
</p>
<p>The South West Australian Floristic Region (SWAFR) is the only global biodiversity hotspot in Australia and represents an ideal test-bed for development of orchid conservation principles. Orchids comprise 6 % of all threatened vascular plants in the SWAFR, with 76 out of the 407 species known for the region having a high level of conservation risk. The situation in the SWAFR is a portent of the global crisis in terrestrial orchid conservation, and it is a region where innovative conservation solutions will be required if the impending wave of extinction is to be averted. Major threatening processes are varied, and include land clearance, salinity, burning, weed encroachment, disease and pests. This is compounded by highly specialized pollinators (locally endemic native invertebrates) and, in the most threatened groups such as hammer orchids (Drakaea) and spider orchids (Caladenia), high levels of mycorrhizal specialization. Management and development of effective conservation strategies for SWAFR orchids require a wide range of integrated scientific approaches to mitigate impacts that directly influence ecological traits critical for survival.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In response to threats to orchid species, integrated conservation approaches have been adopted (including ex situ and translocation principles) in the SWAFR with the result that a significant, multidisciplinary approach is under development to facilitate conservation of some of the most threatened taxa and build expertise to carry out assisted migration to new sites. Here the past two decades of orchid conservation research in the SWAFR and the role of research-based approaches for managing effective orchid conservation in a global biodiversity hotspot are reviewed.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19218582</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Terrestrial orchid conservation in the age of extinction.</ArticleTitle>
<Pagination>
<MedlinePgn>543-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcp025</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Conservation through reserves alone is now considered unlikely to achieve protection of plant species necessary to mitigate direct losses of habitat and the pervasive impact of global climate change. Assisted translocation/migration represent new challenges in the face of climate change; species, particularly orchids, will need artificial assistance to migrate from hostile environments, across ecological barriers (alienated lands such as farmlands and built infrastructure) to new climatically buffered sites. The technology and science to underpin assisted migration concepts are in their infancy for plants in general, and orchids, with their high degree of rarity, represent a particularly challenging group for which these principles need to be developed. It is likely that orchids, more than any other plant family, will be in the front-line of species to suffer large-scale extinction events as a result of climate change.</AbstractText>
<AbstractText Label="SCOPE" NlmCategory="METHODS">The South West Australian Floristic Region (SWAFR) is the only global biodiversity hotspot in Australia and represents an ideal test-bed for development of orchid conservation principles. Orchids comprise 6 % of all threatened vascular plants in the SWAFR, with 76 out of the 407 species known for the region having a high level of conservation risk. The situation in the SWAFR is a portent of the global crisis in terrestrial orchid conservation, and it is a region where innovative conservation solutions will be required if the impending wave of extinction is to be averted. Major threatening processes are varied, and include land clearance, salinity, burning, weed encroachment, disease and pests. This is compounded by highly specialized pollinators (locally endemic native invertebrates) and, in the most threatened groups such as hammer orchids (Drakaea) and spider orchids (Caladenia), high levels of mycorrhizal specialization. Management and development of effective conservation strategies for SWAFR orchids require a wide range of integrated scientific approaches to mitigate impacts that directly influence ecological traits critical for survival.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In response to threats to orchid species, integrated conservation approaches have been adopted (including ex situ and translocation principles) in the SWAFR with the result that a significant, multidisciplinary approach is under development to facilitate conservation of some of the most threatened taxa and build expertise to carry out assisted migration to new sites. Here the past two decades of orchid conservation research in the SWAFR and the role of research-based approaches for managing effective orchid conservation in a global biodiversity hotspot are reviewed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Swarts</LastName>
<ForeName>Nigel D</ForeName>
<Initials>ND</Initials>
<AffiliationInfo>
<Affiliation>Kings Park and Botanic Garden, West Perth, WA 6005, Australia. Nigel.Swarts@bgpa.wa.gov.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dixon</LastName>
<ForeName>Kingsley W</ForeName>
<Initials>KW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003247" MajorTopicYN="Y">Conservation of Natural Resources</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053476" MajorTopicYN="Y">Extinction, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="Y">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>240</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19218582</ArticleId>
<ArticleId IdType="pii">mcp025</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcp025</ArticleId>
<ArticleId IdType="pmc">PMC2720663</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 1999 Oct;8(10):1719-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 24;403(6772):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2000 Nov;9(11):1863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11091322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Jul 22;268(1475):1435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):2089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jun;7(6):270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 May;56(5):888-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Sep;11(9):1831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Oct;12(10):2783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Oct;57(10):2252-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2003 Oct;107(Pt 10):1210-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14635769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2004 Mar;92(3):218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14666133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 May;13(5):1111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Aug;13(8):2393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15245412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2004 Aug;79(3):473-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 May;166(2):639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Apr;109(Pt 4):452-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15912933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Jul;59(7):1449-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2006 May;81(2):219-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Sep;20(9):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Jan;111(Pt 1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1085-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Aug;17(16):3707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Aug;104(3):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Jan;91(1):52-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 Nov;89(11):1852-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Oct;88(10):1868-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Oct;88(10):1903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1998 Dec;85(12):1779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Feb;122(3):297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Dec;50(6):2207-2220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Foreign Med Chir Rev. 1862 Oct;30(60):312-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30163543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1995 Jun;4(3):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7663751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19218582
   |texte=   Terrestrial orchid conservation in the age of extinction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19218582" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020