Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.

Identifieur interne : 002925 ( Main/Corpus ); précédent : 002924; suivant : 002926

Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.

Auteurs : Riina Jalonen ; Pekka Nygren ; Jorge Sierra

Source :

RBID : pubmed:19552666

English descriptors

Abstract

Symbiotic dinitrogen fixation by legume trees represents a substantial N input in agroforestry systems, which may benefit the associated crops. Applying (15)N labelling, we studied N transfer via common mycelial networks (CMN) and root exudation from the legume tree Gliricidia sepium to the associated fodder grass Dichantium aristatum. The plants were grown in greenhouse in shared pots in full interaction (treatment FI) or with their root systems separated with a fine mesh that allowed N transfer via CMN only (treatment MY). Tree root exudation was measured separately with hydroponics. Nitrogen transfer estimates were based on the isotopic signature of N (delta(15)N) transferred from the donor. We obtained a range for estimates by calculating transfer with delta(15)N of tree roots and exudates. Nitrogen transfer was 3.7-14.0 and 0.7-2.5% of grass total N in treatments FI and MY, respectively. Root delta(15)N gave the lower and exudate delta(15)N the higher estimates. Transfer in FI probably occurred mainly via root exudation. Transfer in MY correlated negatively with grass root N concentration, implying that it was driven by source-sink relationships between the plants. The range of transfer estimates, depending on source delta(15)N applied, indicates the need of understanding the transfer mechanisms as a basis for reliable estimates.

DOI: 10.1111/j.1365-3040.2009.02004.x
PubMed: 19552666

Links to Exploration step

pubmed:19552666

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.</title>
<author>
<name sortKey="Jalonen, Riina" sort="Jalonen, Riina" uniqKey="Jalonen R" first="Riina" last="Jalonen">Riina Jalonen</name>
<affiliation>
<nlm:affiliation>Department of Forest Ecology, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nygren, Pekka" sort="Nygren, Pekka" uniqKey="Nygren P" first="Pekka" last="Nygren">Pekka Nygren</name>
</author>
<author>
<name sortKey="Sierra, Jorge" sort="Sierra, Jorge" uniqKey="Sierra J" first="Jorge" last="Sierra">Jorge Sierra</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19552666</idno>
<idno type="pmid">19552666</idno>
<idno type="doi">10.1111/j.1365-3040.2009.02004.x</idno>
<idno type="wicri:Area/Main/Corpus">002925</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002925</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.</title>
<author>
<name sortKey="Jalonen, Riina" sort="Jalonen, Riina" uniqKey="Jalonen R" first="Riina" last="Jalonen">Riina Jalonen</name>
<affiliation>
<nlm:affiliation>Department of Forest Ecology, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nygren, Pekka" sort="Nygren, Pekka" uniqKey="Nygren P" first="Pekka" last="Nygren">Pekka Nygren</name>
</author>
<author>
<name sortKey="Sierra, Jorge" sort="Sierra, Jorge" uniqKey="Sierra J" first="Jorge" last="Sierra">Jorge Sierra</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (metabolism)</term>
<term>Mycelium (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Nitrogen Isotopes (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Poaceae (metabolism)</term>
<term>Soil (analysis)</term>
<term>Trees (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fabaceae</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Poaceae</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Nitrogen Fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbiotic dinitrogen fixation by legume trees represents a substantial N input in agroforestry systems, which may benefit the associated crops. Applying (15)N labelling, we studied N transfer via common mycelial networks (CMN) and root exudation from the legume tree Gliricidia sepium to the associated fodder grass Dichantium aristatum. The plants were grown in greenhouse in shared pots in full interaction (treatment FI) or with their root systems separated with a fine mesh that allowed N transfer via CMN only (treatment MY). Tree root exudation was measured separately with hydroponics. Nitrogen transfer estimates were based on the isotopic signature of N (delta(15)N) transferred from the donor. We obtained a range for estimates by calculating transfer with delta(15)N of tree roots and exudates. Nitrogen transfer was 3.7-14.0 and 0.7-2.5% of grass total N in treatments FI and MY, respectively. Root delta(15)N gave the lower and exudate delta(15)N the higher estimates. Transfer in FI probably occurred mainly via root exudation. Transfer in MY correlated negatively with grass root N concentration, implying that it was driven by source-sink relationships between the plants. The range of transfer estimates, depending on source delta(15)N applied, indicates the need of understanding the transfer mechanisms as a basis for reliable estimates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19552666</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.</ArticleTitle>
<Pagination>
<MedlinePgn>1366-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-3040.2009.02004.x</ELocationID>
<Abstract>
<AbstractText>Symbiotic dinitrogen fixation by legume trees represents a substantial N input in agroforestry systems, which may benefit the associated crops. Applying (15)N labelling, we studied N transfer via common mycelial networks (CMN) and root exudation from the legume tree Gliricidia sepium to the associated fodder grass Dichantium aristatum. The plants were grown in greenhouse in shared pots in full interaction (treatment FI) or with their root systems separated with a fine mesh that allowed N transfer via CMN only (treatment MY). Tree root exudation was measured separately with hydroponics. Nitrogen transfer estimates were based on the isotopic signature of N (delta(15)N) transferred from the donor. We obtained a range for estimates by calculating transfer with delta(15)N of tree roots and exudates. Nitrogen transfer was 3.7-14.0 and 0.7-2.5% of grass total N in treatments FI and MY, respectively. Root delta(15)N gave the lower and exudate delta(15)N the higher estimates. Transfer in FI probably occurred mainly via root exudation. Transfer in MY correlated negatively with grass root N concentration, implying that it was driven by source-sink relationships between the plants. The range of transfer estimates, depending on source delta(15)N applied, indicates the need of understanding the transfer mechanisms as a basis for reliable estimates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jalonen</LastName>
<ForeName>Riina</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecology, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nygren</LastName>
<ForeName>Pekka</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sierra</LastName>
<ForeName>Jorge</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19552666</ArticleId>
<ArticleId IdType="pii">PCE2004</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-3040.2009.02004.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002925 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002925 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19552666
   |texte=   Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19552666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020