Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.

Identifieur interne : 002697 ( Main/Corpus ); précédent : 002696; suivant : 002698

Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.

Auteurs : Juan A. L Pez-Ráez ; Adriaan Verhage ; Iván Fernández ; Juan M. García ; Concepci N Azc N-Aguilar ; Victor Flors ; María J. Pozo

Source :

RBID : pubmed:20378666

English descriptors

Abstract

Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.

DOI: 10.1093/jxb/erq089
PubMed: 20378666
PubMed Central: PMC2882257

Links to Exploration step

pubmed:20378666

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.</title>
<author>
<name sortKey="L Pez Raez, Juan A" sort="L Pez Raez, Juan A" uniqKey="L Pez Raez J" first="Juan A" last="L Pez-Ráez">Juan A. L Pez-Ráez</name>
<affiliation>
<nlm:affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verhage, Adriaan" sort="Verhage, Adriaan" uniqKey="Verhage A" first="Adriaan" last="Verhage">Adriaan Verhage</name>
</author>
<author>
<name sortKey="Fernandez, Ivan" sort="Fernandez, Ivan" uniqKey="Fernandez I" first="Iván" last="Fernández">Iván Fernández</name>
</author>
<author>
<name sortKey="Garcia, Juan M" sort="Garcia, Juan M" uniqKey="Garcia J" first="Juan M" last="García">Juan M. García</name>
</author>
<author>
<name sortKey="Azc N Aguilar, Concepci N" sort="Azc N Aguilar, Concepci N" uniqKey="Azc N Aguilar C" first="Concepci N" last="Azc N-Aguilar">Concepci N Azc N-Aguilar</name>
</author>
<author>
<name sortKey="Flors, Victor" sort="Flors, Victor" uniqKey="Flors V" first="Victor" last="Flors">Victor Flors</name>
</author>
<author>
<name sortKey="Pozo, Maria J" sort="Pozo, Maria J" uniqKey="Pozo M" first="María J" last="Pozo">María J. Pozo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20378666</idno>
<idno type="pmid">20378666</idno>
<idno type="doi">10.1093/jxb/erq089</idno>
<idno type="pmc">PMC2882257</idno>
<idno type="wicri:Area/Main/Corpus">002697</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002697</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.</title>
<author>
<name sortKey="L Pez Raez, Juan A" sort="L Pez Raez, Juan A" uniqKey="L Pez Raez J" first="Juan A" last="L Pez-Ráez">Juan A. L Pez-Ráez</name>
<affiliation>
<nlm:affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verhage, Adriaan" sort="Verhage, Adriaan" uniqKey="Verhage A" first="Adriaan" last="Verhage">Adriaan Verhage</name>
</author>
<author>
<name sortKey="Fernandez, Ivan" sort="Fernandez, Ivan" uniqKey="Fernandez I" first="Iván" last="Fernández">Iván Fernández</name>
</author>
<author>
<name sortKey="Garcia, Juan M" sort="Garcia, Juan M" uniqKey="Garcia J" first="Juan M" last="García">Juan M. García</name>
</author>
<author>
<name sortKey="Azc N Aguilar, Concepci N" sort="Azc N Aguilar, Concepci N" uniqKey="Azc N Aguilar C" first="Concepci N" last="Azc N-Aguilar">Concepci N Azc N-Aguilar</name>
</author>
<author>
<name sortKey="Flors, Victor" sort="Flors, Victor" uniqKey="Flors V" first="Victor" last="Flors">Victor Flors</name>
</author>
<author>
<name sortKey="Pozo, Maria J" sort="Pozo, Maria J" uniqKey="Pozo M" first="María J" last="Pozo">María J. Pozo</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetates (pharmacology)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Cyclopentanes (pharmacology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Glomeromycota (cytology)</term>
<term>Glomeromycota (drug effects)</term>
<term>Glomeromycota (growth & development)</term>
<term>Glomeromycota (metabolism)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Lycopersicon esculentum (drug effects)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (immunology)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Metabolic Networks and Pathways (drug effects)</term>
<term>Mycorrhizae (cytology)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Oxylipins (chemistry)</term>
<term>Oxylipins (metabolism)</term>
<term>Oxylipins (pharmacology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Symbiosis (drug effects)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxylipins</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetates</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Glomeromycota</term>
<term>Lycopersicon esculentum</term>
<term>Metabolic Networks and Pathways</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Lycopersicon esculentum</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Colony Count, Microbial</term>
<term>Gene Expression Profiling</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20378666</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>2589-601</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erq089</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>López-Ráez</LastName>
<ForeName>Juan A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verhage</LastName>
<ForeName>Adriaan</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fernández</LastName>
<ForeName>Iván</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>García</LastName>
<ForeName>Juan M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Azcón-Aguilar</LastName>
<ForeName>Concepción</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Flors</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pozo</LastName>
<ForeName>María J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000085">Acetates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>900N171A0F</RegistryNumber>
<NameOfSubstance UI="C072239">methyl jasmonate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085" MajorTopicYN="N">Acetates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20378666</ArticleId>
<ArticleId IdType="pii">erq089</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erq089</ArticleId>
<ArticleId IdType="pmc">PMC2882257</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Oct;103(2):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Mar;53(368):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Sep;106(1):109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7972514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Apr;66(7):781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Nov;22(11):1455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19810814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17995915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Apr;229(5):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):831-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):904-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):46051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2008 Oct 13;9(15):2498-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):975-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1268-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Apr;54(1):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jan;21(1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Sep;31(9):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):86-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Jul;55(4):553-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1560-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jun;47(6):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2002;505:23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1589-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):671-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Jun;17(6):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3303-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16368162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):130-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17084869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Feb;5(2):159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8453300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jul;22(7):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19522558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Oct;12(5):539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 2;276(5):3620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002697 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002697 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20378666
   |texte=   Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20378666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020