Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

Identifieur interne : 002696 ( Main/Corpus ); précédent : 002695; suivant : 002697

Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

Auteurs : Richard K. Kobe ; Meera Iyer ; Michael B. Walters

Source :

RBID : pubmed:20380206

English descriptors

Abstract

Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.

DOI: 10.1890/09-0027.1
PubMed: 20380206

Links to Exploration step

pubmed:20380206

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.</title>
<author>
<name sortKey="Kobe, Richard K" sort="Kobe, Richard K" uniqKey="Kobe R" first="Richard K" last="Kobe">Richard K. Kobe</name>
<affiliation>
<nlm:affiliation>Department of Forestry, 126 Natural Resources Building, Michigan State University, East Lansing, Michigan 48824-1222, USA. kobe@msu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iyer, Meera" sort="Iyer, Meera" uniqKey="Iyer M" first="Meera" last="Iyer">Meera Iyer</name>
</author>
<author>
<name sortKey="Walters, Michael B" sort="Walters, Michael B" uniqKey="Walters M" first="Michael B" last="Walters">Michael B. Walters</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20380206</idno>
<idno type="pmid">20380206</idno>
<idno type="doi">10.1890/09-0027.1</idno>
<idno type="wicri:Area/Main/Corpus">002696</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.</title>
<author>
<name sortKey="Kobe, Richard K" sort="Kobe, Richard K" uniqKey="Kobe R" first="Richard K" last="Kobe">Richard K. Kobe</name>
<affiliation>
<nlm:affiliation>Department of Forestry, 126 Natural Resources Building, Michigan State University, East Lansing, Michigan 48824-1222, USA. kobe@msu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iyer, Meera" sort="Iyer, Meera" uniqKey="Iyer M" first="Meera" last="Iyer">Meera Iyer</name>
</author>
<author>
<name sortKey="Walters, Michael B" sort="Walters, Michael B" uniqKey="Walters M" first="Michael B" last="Walters">Michael B. Walters</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitrogen (pharmacology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Stems (drug effects)</term>
<term>Plant Stems (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Trees (classification)</term>
<term>Trees (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Models, Biological</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20380206</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>91</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.</ArticleTitle>
<Pagination>
<MedlinePgn>166-79</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kobe</LastName>
<ForeName>Richard K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, 126 Natural Resources Building, Michigan State University, East Lansing, Michigan 48824-1222, USA. kobe@msu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iyer</LastName>
<ForeName>Meera</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walters</LastName>
<ForeName>Michael B</ForeName>
<Initials>MB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20380206</ArticleId>
<ArticleId IdType="doi">10.1890/09-0027.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20380206
   |texte=   Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20380206" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020