Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal symbiosis of tropical African trees.

Identifieur interne : 002180 ( Main/Corpus ); précédent : 002179; suivant : 002181

Ectomycorrhizal symbiosis of tropical African trees.

Auteurs : Amadou M. Bâ ; Robin Duponnois ; Bernard Moyersoen ; Abdala G. Diédhiou

Source :

RBID : pubmed:21989710

English descriptors

Abstract

The diversity, ecology and function of ectomycorrhizal (EM) fungi and ectomycorrhizas (ECMs) on tropical African tree species are reviewed here. While ECMs are the most frequent mycorrhizal type in temperate and boreal forests, they concern an economically and ecologically important minority of plants in African tropical forests. In these African tropical forests, ECMs are found mainly on caesalpionioid legumes, Sarcolaenaceae, Dipterocarpaceae, Asterpeiaceae, Phyllantaceae, Sapotaceae, Papilionoideae, Gnetaceae and Proteaceae, and distributed in open, gallery and rainforests of the Guineo-Congolian basin, Zambezian Miombo woodlands of East and South-Central Africa and Sudanian savannah woodlands of the sub-sahara. Overall, EM status was confirmed in 93 (26%) among 354 tree species belonging to EM genera. In addition, 195 fungal taxa were identified using morphological descriptions and sequencing of the ML5/ML6 fragment of sporocarps and ECMs from West Africa. Analyses of the belowground EM fungal communities mostly based on fungal internal transcribed spacer sequences of ECMs from Continental Africa, Madagascar and the Seychelles also revealed more than 350 putative species of EM fungi belonging mainly to 18 phylogenetic lineages. As in temperate forests, the /russula-lactarius and /tomentella-thelephora lineages dominated EM fungal flora in tropical Africa. A low level of host preference and dominance of multi-host fungal taxa on different African adult tree species and their seedlings were revealed, suggesting a potential for the formation of common ectomycorrhizal networks. Moreover, the EM inoculum potential in terms of types and density of propagules (spores, sclerotia, EM root fragments and fragments of mycelia strands) in the soil allowed opportunistic root colonisation as well as long-term survival in the soil during the dry season. These are important characteristics when choosing an EM fungus for field application. In this respect, Thelephoroid fungal sp. XM002, an efficient and competitive broad host range EM fungus, possessed these characteristics and appeared to be a good candidate for artificial inoculation of Caesalps and Phyllanthaceae seedlings in nurseries. However, further efforts should be made to assess the genetic and functional diversity of African EM fungi as well as the EM status of unstudied plant species and to strengthen the use of efficient and competitive EM fungi to improve production of ecologically and economically important African multipurpose trees in plantations.

DOI: 10.1007/s00572-011-0415-x
PubMed: 21989710

Links to Exploration step

pubmed:21989710

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal symbiosis of tropical African trees.</title>
<author>
<name sortKey="Ba, Amadou M" sort="Ba, Amadou M" uniqKey="Ba A" first="Amadou M" last="Bâ">Amadou M. Bâ</name>
<affiliation>
<nlm:affiliation>Laboratoire Commun de Microbiologie IRD/UCAD/ISRA, (LCM), Centre de Recherche de Bel Air, Dakar, Sénégal. amadou.ba@ird.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duponnois, Robin" sort="Duponnois, Robin" uniqKey="Duponnois R" first="Robin" last="Duponnois">Robin Duponnois</name>
</author>
<author>
<name sortKey="Moyersoen, Bernard" sort="Moyersoen, Bernard" uniqKey="Moyersoen B" first="Bernard" last="Moyersoen">Bernard Moyersoen</name>
</author>
<author>
<name sortKey="Diedhiou, Abdala G" sort="Diedhiou, Abdala G" uniqKey="Diedhiou A" first="Abdala G" last="Diédhiou">Abdala G. Diédhiou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21989710</idno>
<idno type="pmid">21989710</idno>
<idno type="doi">10.1007/s00572-011-0415-x</idno>
<idno type="wicri:Area/Main/Corpus">002180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal symbiosis of tropical African trees.</title>
<author>
<name sortKey="Ba, Amadou M" sort="Ba, Amadou M" uniqKey="Ba A" first="Amadou M" last="Bâ">Amadou M. Bâ</name>
<affiliation>
<nlm:affiliation>Laboratoire Commun de Microbiologie IRD/UCAD/ISRA, (LCM), Centre de Recherche de Bel Air, Dakar, Sénégal. amadou.ba@ird.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duponnois, Robin" sort="Duponnois, Robin" uniqKey="Duponnois R" first="Robin" last="Duponnois">Robin Duponnois</name>
</author>
<author>
<name sortKey="Moyersoen, Bernard" sort="Moyersoen, Bernard" uniqKey="Moyersoen B" first="Bernard" last="Moyersoen">Bernard Moyersoen</name>
</author>
<author>
<name sortKey="Diedhiou, Abdala G" sort="Diedhiou, Abdala G" uniqKey="Diedhiou A" first="Abdala G" last="Diédhiou">Abdala G. Diédhiou</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Africa (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (physiology)</term>
<term>Ecology (MeSH)</term>
<term>Fabaceae (microbiology)</term>
<term>Fabaceae (physiology)</term>
<term>Fungi (genetics)</term>
<term>Fungi (physiology)</term>
<term>Genetic Variation (genetics)</term>
<term>Host Specificity (physiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Seedlings (microbiology)</term>
<term>Seedlings (physiology)</term>
<term>Seeds (microbiology)</term>
<term>Seeds (physiology)</term>
<term>Symbiosis (physiology)</term>
<term>Trees (microbiology)</term>
<term>Trees (physiology)</term>
<term>Tropical Climate (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Africa</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Fungi</term>
<term>Genetic Variation</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
<term>Plant Roots</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Fabaceae</term>
<term>Fungi</term>
<term>Host Specificity</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Seedlings</term>
<term>Seeds</term>
<term>Symbiosis</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecology</term>
<term>Tropical Climate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The diversity, ecology and function of ectomycorrhizal (EM) fungi and ectomycorrhizas (ECMs) on tropical African tree species are reviewed here. While ECMs are the most frequent mycorrhizal type in temperate and boreal forests, they concern an economically and ecologically important minority of plants in African tropical forests. In these African tropical forests, ECMs are found mainly on caesalpionioid legumes, Sarcolaenaceae, Dipterocarpaceae, Asterpeiaceae, Phyllantaceae, Sapotaceae, Papilionoideae, Gnetaceae and Proteaceae, and distributed in open, gallery and rainforests of the Guineo-Congolian basin, Zambezian Miombo woodlands of East and South-Central Africa and Sudanian savannah woodlands of the sub-sahara. Overall, EM status was confirmed in 93 (26%) among 354 tree species belonging to EM genera. In addition, 195 fungal taxa were identified using morphological descriptions and sequencing of the ML5/ML6 fragment of sporocarps and ECMs from West Africa. Analyses of the belowground EM fungal communities mostly based on fungal internal transcribed spacer sequences of ECMs from Continental Africa, Madagascar and the Seychelles also revealed more than 350 putative species of EM fungi belonging mainly to 18 phylogenetic lineages. As in temperate forests, the /russula-lactarius and /tomentella-thelephora lineages dominated EM fungal flora in tropical Africa. A low level of host preference and dominance of multi-host fungal taxa on different African adult tree species and their seedlings were revealed, suggesting a potential for the formation of common ectomycorrhizal networks. Moreover, the EM inoculum potential in terms of types and density of propagules (spores, sclerotia, EM root fragments and fragments of mycelia strands) in the soil allowed opportunistic root colonisation as well as long-term survival in the soil during the dry season. These are important characteristics when choosing an EM fungus for field application. In this respect, Thelephoroid fungal sp. XM002, an efficient and competitive broad host range EM fungus, possessed these characteristics and appeared to be a good candidate for artificial inoculation of Caesalps and Phyllanthaceae seedlings in nurseries. However, further efforts should be made to assess the genetic and functional diversity of African EM fungi as well as the EM status of unstudied plant species and to strengthen the use of efficient and competitive EM fungi to improve production of ecologically and economically important African multipurpose trees in plantations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21989710</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal symbiosis of tropical African trees.</ArticleTitle>
<Pagination>
<MedlinePgn>1-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-011-0415-x</ELocationID>
<Abstract>
<AbstractText>The diversity, ecology and function of ectomycorrhizal (EM) fungi and ectomycorrhizas (ECMs) on tropical African tree species are reviewed here. While ECMs are the most frequent mycorrhizal type in temperate and boreal forests, they concern an economically and ecologically important minority of plants in African tropical forests. In these African tropical forests, ECMs are found mainly on caesalpionioid legumes, Sarcolaenaceae, Dipterocarpaceae, Asterpeiaceae, Phyllantaceae, Sapotaceae, Papilionoideae, Gnetaceae and Proteaceae, and distributed in open, gallery and rainforests of the Guineo-Congolian basin, Zambezian Miombo woodlands of East and South-Central Africa and Sudanian savannah woodlands of the sub-sahara. Overall, EM status was confirmed in 93 (26%) among 354 tree species belonging to EM genera. In addition, 195 fungal taxa were identified using morphological descriptions and sequencing of the ML5/ML6 fragment of sporocarps and ECMs from West Africa. Analyses of the belowground EM fungal communities mostly based on fungal internal transcribed spacer sequences of ECMs from Continental Africa, Madagascar and the Seychelles also revealed more than 350 putative species of EM fungi belonging mainly to 18 phylogenetic lineages. As in temperate forests, the /russula-lactarius and /tomentella-thelephora lineages dominated EM fungal flora in tropical Africa. A low level of host preference and dominance of multi-host fungal taxa on different African adult tree species and their seedlings were revealed, suggesting a potential for the formation of common ectomycorrhizal networks. Moreover, the EM inoculum potential in terms of types and density of propagules (spores, sclerotia, EM root fragments and fragments of mycelia strands) in the soil allowed opportunistic root colonisation as well as long-term survival in the soil during the dry season. These are important characteristics when choosing an EM fungus for field application. In this respect, Thelephoroid fungal sp. XM002, an efficient and competitive broad host range EM fungus, possessed these characteristics and appeared to be a good candidate for artificial inoculation of Caesalps and Phyllanthaceae seedlings in nurseries. However, further efforts should be made to assess the genetic and functional diversity of African EM fungi as well as the EM status of unstudied plant species and to strengthen the use of efficient and competitive EM fungi to improve production of ecologically and economically important African multipurpose trees in plantations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName></LastName>
<ForeName>Amadou M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Commun de Microbiologie IRD/UCAD/ISRA, (LCM), Centre de Recherche de Bel Air, Dakar, Sénégal. amadou.ba@ird.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duponnois</LastName>
<ForeName>Robin</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moyersoen</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Diédhiou</LastName>
<ForeName>Abdala G</ForeName>
<Initials>AG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000349" MajorTopicYN="N" Type="Geographic">Africa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004463" MajorTopicYN="N">Ecology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014329" MajorTopicYN="N">Tropical Climate</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21989710</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-011-0415-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2008;178(2):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(2):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):351-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):1855-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(11):3119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Feb;22(2):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2001 Feb;157(2):141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 May;17(3):195-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17221233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Aug;12(8):2219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Apr;10(4):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2008 Jan-Feb;100(1):68-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Jul;17(5):415-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17334790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Oct;19(8):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19705166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Jul;20(14):3071-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21645161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Oct;14(5):313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(1):179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):1011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Dec;16(1):11-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 1975 Mar;6(3):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1120179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):589-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Aug;69(2):274-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19508503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Mar;14(3):829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Feb;12(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11968942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):923-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Nov;16(8):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Jan;13(1):231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14653803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(2):345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1996;50:177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8751358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Apr;4(4):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002180 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002180 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21989710
   |texte=   Ectomycorrhizal symbiosis of tropical African trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21989710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020