Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

Identifieur interne : 001E13 ( Main/Corpus ); précédent : 001E12; suivant : 001E14

Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.

Auteurs : Ricardo Aroca ; Juan Manuel Ruiz-Lozano ; Angel María Zamarre O ; José Antonio Paz ; José María García-Mina ; María José Pozo ; Juan Antonio L Pez-Ráez

Source :

RBID : pubmed:23102876

English descriptors

Abstract

Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.

DOI: 10.1016/j.jplph.2012.08.020
PubMed: 23102876

Links to Exploration step

pubmed:23102876

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.</title>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
<author>
<name sortKey="Zamarre O, Angel Maria" sort="Zamarre O, Angel Maria" uniqKey="Zamarre O A" first="Angel María" last="Zamarre O">Angel María Zamarre O</name>
</author>
<author>
<name sortKey="Paz, Jose Antonio" sort="Paz, Jose Antonio" uniqKey="Paz J" first="José Antonio" last="Paz">José Antonio Paz</name>
</author>
<author>
<name sortKey="Garcia Mina, Jose Maria" sort="Garcia Mina, Jose Maria" uniqKey="Garcia Mina J" first="José María" last="García-Mina">José María García-Mina</name>
</author>
<author>
<name sortKey="Pozo, Maria Jose" sort="Pozo, Maria Jose" uniqKey="Pozo M" first="María José" last="Pozo">María José Pozo</name>
</author>
<author>
<name sortKey="L Pez Raez, Juan Antonio" sort="L Pez Raez, Juan Antonio" uniqKey="L Pez Raez J" first="Juan Antonio" last="L Pez-Ráez">Juan Antonio L Pez-Ráez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23102876</idno>
<idno type="pmid">23102876</idno>
<idno type="doi">10.1016/j.jplph.2012.08.020</idno>
<idno type="wicri:Area/Main/Corpus">001E13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.</title>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
<author>
<name sortKey="Zamarre O, Angel Maria" sort="Zamarre O, Angel Maria" uniqKey="Zamarre O A" first="Angel María" last="Zamarre O">Angel María Zamarre O</name>
</author>
<author>
<name sortKey="Paz, Jose Antonio" sort="Paz, Jose Antonio" uniqKey="Paz J" first="José Antonio" last="Paz">José Antonio Paz</name>
</author>
<author>
<name sortKey="Garcia Mina, Jose Maria" sort="Garcia Mina, Jose Maria" uniqKey="Garcia Mina J" first="José María" last="García-Mina">José María García-Mina</name>
</author>
<author>
<name sortKey="Pozo, Maria Jose" sort="Pozo, Maria Jose" uniqKey="Pozo M" first="María José" last="Pozo">María José Pozo</name>
</author>
<author>
<name sortKey="L Pez Raez, Juan Antonio" sort="L Pez Raez, Juan Antonio" uniqKey="L Pez Raez J" first="Juan Antonio" last="L Pez-Ráez">Juan Antonio L Pez-Ráez</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant physiology</title>
<idno type="eISSN">1618-1328</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (genetics)</term>
<term>Abscisic Acid (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Germination (MeSH)</term>
<term>Glomeromycota (growth & development)</term>
<term>Glomeromycota (physiology)</term>
<term>Lactones (metabolism)</term>
<term>Lettuce (drug effects)</term>
<term>Lettuce (metabolism)</term>
<term>Lettuce (microbiology)</term>
<term>Lettuce (physiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photosystem II Protein Complex (physiology)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Salinity (MeSH)</term>
<term>Seeds (drug effects)</term>
<term>Seeds (metabolism)</term>
<term>Seeds (microbiology)</term>
<term>Seeds (physiology)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Lactones</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Lettuce</term>
<term>Plant Roots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lettuce</term>
<term>Plant Roots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lettuce</term>
<term>Plant Roots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Lettuce</term>
<term>Mycorrhizae</term>
<term>Photosystem II Protein Complex</term>
<term>Plant Roots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Gene Expression Regulation, Plant</term>
<term>Germination</term>
<term>Plant Transpiration</term>
<term>Salinity</term>
<term>Stress, Physiological</term>
<term>Symbiosis</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23102876</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-1328</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>170</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of plant physiology</Title>
<ISOAbbreviation>J Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.</ArticleTitle>
<Pagination>
<MedlinePgn>47-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jplph.2012.08.020</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0176-1617(12)00401-4</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed. AM plants showed improved growth rates and a better performance of physiological parameters such as stomatal conductance and efficiency of photosystem II than non-mycorrhizal plants under salt stress since very early stages - 3 weeks - of plant colonization. Moreover, ABA levels were lower in those plants, suggesting that they were less stressed than non-colonized plants. On the other hand, we show that both AM symbiosis and salinity influence strigolactone production, although in a different way in AM and non-AM plants. The results suggest that AM symbiosis alleviates salt stress by altering the hormonal profiles and affecting plant physiology in the host plant. Moreover, a correlation between strigolactone production, ABA content, AM root colonization and salinity level is shown. We propose here that under these unfavourable conditions, plants increase strigolactone production in order to promote symbiosis establishment to cope with salt stress.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier GmbH. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zamarreño</LastName>
<ForeName>Angel María</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paz</LastName>
<ForeName>José Antonio</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>García-Mina</LastName>
<ForeName>José María</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pozo</LastName>
<ForeName>María José</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>López-Ráez</LastName>
<ForeName>Juan Antonio</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Plant Physiol</MedlineTA>
<NlmUniqueID>9882059</NlmUniqueID>
<ISSNLinking>0176-1617</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007783">Lactones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007783" MajorTopicYN="N">Lactones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018545" MajorTopicYN="N">Lettuce</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23102876</ArticleId>
<ArticleId IdType="pii">S0176-1617(12)00401-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.jplph.2012.08.020</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001E13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23102876
   |texte=   Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23102876" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020