Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.

Identifieur interne : 001A27 ( Main/Corpus ); précédent : 001A26; suivant : 001A28

Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.

Auteurs : R B S. Valadares ; S. Perotto ; E C Santos ; M R Lambais

Source :

RBID : pubmed:24310930

English descriptors

Abstract

Mutualistic symbioses between plants and fungi are a widespread phenomenon in nature. Particularly in orchids, association with symbiotic fungi is required for seed germination and seedling development. During the initial stages of symbiotic germination, before the onset of photosynthesis, orchid protocorms are fully mycoheterotrophic. The molecular mechanisms involved in orchid symbiotic germination and development are largely unknown, but it is likely that changes in plant energy metabolism and defense-related responses play a central role in these processes. We have used 2D-LC-MS/MS coupled to isobaric tagging for relative and absolute quantification to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. We identified and quantified 88 proteins, including proteins putatively involved in energy metabolism, cell rescue and defense, molecular signaling, and secondary metabolism. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense-related responses, and phytoalexins and carotenoid biosynthesis. Our results suggest profound metabolic changes in orchid protocorms during the switch from the fully mycoheterotrophic to the photosynthetic stage. Part of these changes may be also related to the obligatory nature of the interaction with the endomycorrhizal fungus.

DOI: 10.1007/s00572-013-0547-2
PubMed: 24310930

Links to Exploration step

pubmed:24310930

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.</title>
<author>
<name sortKey="Valadares, R B S" sort="Valadares, R B S" uniqKey="Valadares R" first="R B S" last="Valadares">R B S. Valadares</name>
<affiliation>
<nlm:affiliation>Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perotto, S" sort="Perotto, S" uniqKey="Perotto S" first="S" last="Perotto">S. Perotto</name>
</author>
<author>
<name sortKey="Santos, E C" sort="Santos, E C" uniqKey="Santos E" first="E C" last="Santos">E C Santos</name>
</author>
<author>
<name sortKey="Lambais, M R" sort="Lambais, M R" uniqKey="Lambais M" first="M R" last="Lambais">M R Lambais</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24310930</idno>
<idno type="pmid">24310930</idno>
<idno type="doi">10.1007/s00572-013-0547-2</idno>
<idno type="wicri:Area/Main/Corpus">001A27</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.</title>
<author>
<name sortKey="Valadares, R B S" sort="Valadares, R B S" uniqKey="Valadares R" first="R B S" last="Valadares">R B S. Valadares</name>
<affiliation>
<nlm:affiliation>Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perotto, S" sort="Perotto, S" uniqKey="Perotto S" first="S" last="Perotto">S. Perotto</name>
</author>
<author>
<name sortKey="Santos, E C" sort="Santos, E C" uniqKey="Santos E" first="E C" last="Santos">E C Santos</name>
</author>
<author>
<name sortKey="Lambais, M R" sort="Lambais, M R" uniqKey="Lambais M" first="M R" last="Lambais">M R Lambais</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Germination (physiology)</term>
<term>Homeostasis (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Orchidaceae (microbiology)</term>
<term>Orchidaceae (physiology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Proteomics (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Secondary Metabolism (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Plant Growth Regulators</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Germination</term>
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Energy Metabolism</term>
<term>Homeostasis</term>
<term>Mycorrhizae</term>
<term>Proteome</term>
<term>Proteomics</term>
<term>Secondary Metabolism</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mutualistic symbioses between plants and fungi are a widespread phenomenon in nature. Particularly in orchids, association with symbiotic fungi is required for seed germination and seedling development. During the initial stages of symbiotic germination, before the onset of photosynthesis, orchid protocorms are fully mycoheterotrophic. The molecular mechanisms involved in orchid symbiotic germination and development are largely unknown, but it is likely that changes in plant energy metabolism and defense-related responses play a central role in these processes. We have used 2D-LC-MS/MS coupled to isobaric tagging for relative and absolute quantification to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. We identified and quantified 88 proteins, including proteins putatively involved in energy metabolism, cell rescue and defense, molecular signaling, and secondary metabolism. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense-related responses, and phytoalexins and carotenoid biosynthesis. Our results suggest profound metabolic changes in orchid protocorms during the switch from the fully mycoheterotrophic to the photosynthetic stage. Part of these changes may be also related to the obligatory nature of the interaction with the endomycorrhizal fungus. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24310930</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.</ArticleTitle>
<Pagination>
<MedlinePgn>349-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-013-0547-2</ELocationID>
<Abstract>
<AbstractText>Mutualistic symbioses between plants and fungi are a widespread phenomenon in nature. Particularly in orchids, association with symbiotic fungi is required for seed germination and seedling development. During the initial stages of symbiotic germination, before the onset of photosynthesis, orchid protocorms are fully mycoheterotrophic. The molecular mechanisms involved in orchid symbiotic germination and development are largely unknown, but it is likely that changes in plant energy metabolism and defense-related responses play a central role in these processes. We have used 2D-LC-MS/MS coupled to isobaric tagging for relative and absolute quantification to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. We identified and quantified 88 proteins, including proteins putatively involved in energy metabolism, cell rescue and defense, molecular signaling, and secondary metabolism. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense-related responses, and phytoalexins and carotenoid biosynthesis. Our results suggest profound metabolic changes in orchid protocorms during the switch from the fully mycoheterotrophic to the photosynthetic stage. Part of these changes may be also related to the obligatory nature of the interaction with the endomycorrhizal fungus. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Valadares</LastName>
<ForeName>R B S</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perotto</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Santos</LastName>
<ForeName>E C</ForeName>
<Initials>EC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lambais</LastName>
<ForeName>M R</ForeName>
<Initials>MR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064210" MajorTopicYN="N">Secondary Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24310930</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-013-0547-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):580-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Mar;9(6):1548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19235167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):920-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jun;232(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20396903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Jun;53(6):1017-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(6):862-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15941399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jul;9(7):1197-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10 (12 ):2103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 05;11:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21545723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Sep;7(9):1357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Nov;216(1):148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Feb 1;12(2):594-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23270375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):1011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 May;63(9):3429-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22213816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(6):571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 07;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Oct;8(10):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 May;99(5):831-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 2;279(14):13547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Sep;31(9):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 May;68(10):1442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Feb;104(2):683-689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(1):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Feb;14(2):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19162524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2012 Feb 20;10:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22348804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Aug;7(8):3091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18578521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Feb;72(3):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Oct;4(10):1229-1236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 5;106(18):7660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):248-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1449-1454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Apr;10(4):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):353-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Oct;4(10):1419-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 13;8(8):e72705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23967335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Oct 14;32(18):5539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):414-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2001 Feb;13(1):63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jul;15(5):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15875223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Jun;5(6):241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10838614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):556-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23136382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Feb 10;73(4):753-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24310930
   |texte=   Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:24310930" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020