Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.

Identifieur interne : 001630 ( Main/Corpus ); précédent : 001629; suivant : 001631

Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.

Auteurs : Michael Bitterlich ; Undine Krügel ; Katja Boldt-Burisch ; Philipp Franken ; Christina Kühn

Source :

RBID : pubmed:25482803

English descriptors

Abstract

Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval.

DOI: 10.4161/15592316.2014.970426
PubMed: 25482803
PubMed Central: PMC4622791

Links to Exploration step

pubmed:25482803

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.</title>
<author>
<name sortKey="Bitterlich, Michael" sort="Bitterlich, Michael" uniqKey="Bitterlich M" first="Michael" last="Bitterlich">Michael Bitterlich</name>
<affiliation>
<nlm:affiliation>a Humboldt University of Berlin ; Plant Physiology Department ; Berlin , Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krugel, Undine" sort="Krugel, Undine" uniqKey="Krugel U" first="Undine" last="Krügel">Undine Krügel</name>
</author>
<author>
<name sortKey="Boldt Burisch, Katja" sort="Boldt Burisch, Katja" uniqKey="Boldt Burisch K" first="Katja" last="Boldt-Burisch">Katja Boldt-Burisch</name>
</author>
<author>
<name sortKey="Franken, Philipp" sort="Franken, Philipp" uniqKey="Franken P" first="Philipp" last="Franken">Philipp Franken</name>
</author>
<author>
<name sortKey="Kuhn, Christina" sort="Kuhn, Christina" uniqKey="Kuhn C" first="Christina" last="Kühn">Christina Kühn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25482803</idno>
<idno type="pmid">25482803</idno>
<idno type="doi">10.4161/15592316.2014.970426</idno>
<idno type="pmc">PMC4622791</idno>
<idno type="wicri:Area/Main/Corpus">001630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001630</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.</title>
<author>
<name sortKey="Bitterlich, Michael" sort="Bitterlich, Michael" uniqKey="Bitterlich M" first="Michael" last="Bitterlich">Michael Bitterlich</name>
<affiliation>
<nlm:affiliation>a Humboldt University of Berlin ; Plant Physiology Department ; Berlin , Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krugel, Undine" sort="Krugel, Undine" uniqKey="Krugel U" first="Undine" last="Krügel">Undine Krügel</name>
</author>
<author>
<name sortKey="Boldt Burisch, Katja" sort="Boldt Burisch, Katja" uniqKey="Boldt Burisch K" first="Katja" last="Boldt-Burisch">Katja Boldt-Burisch</name>
</author>
<author>
<name sortKey="Franken, Philipp" sort="Franken, Philipp" uniqKey="Franken P" first="Philipp" last="Franken">Philipp Franken</name>
</author>
<author>
<name sortKey="Kuhn, Christina" sort="Kuhn, Christina" uniqKey="Kuhn C" first="Christina" last="Kühn">Christina Kühn</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brassinosteroids (biosynthesis)</term>
<term>Brassinosteroids (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Oryza (genetics)</term>
<term>Oryza (microbiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Subcellular Fractions (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Brassinosteroids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Brassinosteroids</term>
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Models, Biological</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
<term>Protein Transport</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25482803</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.</ArticleTitle>
<Pagination>
<MedlinePgn>e970426</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/15592316.2014.970426</ELocationID>
<Abstract>
<AbstractText>Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bitterlich</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>a Humboldt University of Berlin ; Plant Physiology Department ; Berlin , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krügel</LastName>
<ForeName>Undine</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boldt-Burisch</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Franken</LastName>
<ForeName>Philipp</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kühn</LastName>
<ForeName>Christina</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060406">Brassinosteroids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078729">sucrose transport protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060406" MajorTopicYN="N">Brassinosteroids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AM, arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">BR, brassinosteroids</Keyword>
<Keyword MajorTopicYN="N">DIM, diminuto</Keyword>
<Keyword MajorTopicYN="N">DRM, detergent resistant membrane</Keyword>
<Keyword MajorTopicYN="N">GO, gene ontology</Keyword>
<Keyword MajorTopicYN="N">LRR, leucine-rich repeat</Keyword>
<Keyword MajorTopicYN="N">MSBP, membrane steroid binding protein</Keyword>
<Keyword MajorTopicYN="N">Oryza sativa</Keyword>
<Keyword MajorTopicYN="N">PCR, polymerase chain reaction</Keyword>
<Keyword MajorTopicYN="N">RNA, ribonucleic acid</Keyword>
<Keyword MajorTopicYN="N">Rhizophagus irregularis</Keyword>
<Keyword MajorTopicYN="N">SNARE, soluble N-ethylmaleimide-sensitive-factor attachment receptor</Keyword>
<Keyword MajorTopicYN="N">SUC, sucrose carrier</Keyword>
<Keyword MajorTopicYN="N">SUT, sucrose transporter</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">brassinosteroid</Keyword>
<Keyword MajorTopicYN="N">membrane trafficking</Keyword>
<Keyword MajorTopicYN="N">protein-protein interactions</Keyword>
<Keyword MajorTopicYN="N">sucrose transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25482803</ArticleId>
<ArticleId IdType="doi">10.4161/15592316.2014.970426</ArticleId>
<ArticleId IdType="pmc">PMC4622791</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 16;344(6185):711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24833385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jan;5(1):43-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(4):634-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21214652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Mar;235(3):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21947665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 15;25(2):288-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Feb;185(3):716-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Mar;44(3):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jul;50(7):1191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Oct;6(10):1711-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jul;17(7):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jun;78(5):877-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24654931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Apr;55(4):672-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24616268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):180-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Mar 13;424(3):165-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Aug 15;168(12):1426-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1880-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502355</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001630 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001630 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25482803
   |texte=   Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25482803" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020