Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.

Identifieur interne : 001575 ( Main/Corpus ); précédent : 001574; suivant : 001576

Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.

Auteurs : Carolyn F. Weber ; Gary M. King ; Ken Aho

Source :

RBID : pubmed:25629158

English descriptors

Abstract

Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and sagebrush-dominated soils warrant future research to examine soil fungal community composition across more sites and time points as well as in association with native grass species that also occupy cheatgrass-invaded ecosystems.

DOI: 10.1371/journal.pone.0117026
PubMed: 25629158
PubMed Central: PMC4309613

Links to Exploration step

pubmed:25629158

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.</title>
<author>
<name sortKey="Weber, Carolyn F" sort="Weber, Carolyn F" uniqKey="Weber C" first="Carolyn F" last="Weber">Carolyn F. Weber</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="King, Gary M" sort="King, Gary M" uniqKey="King G" first="Gary M" last="King">Gary M. King</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aho, Ken" sort="Aho, Ken" uniqKey="Aho K" first="Ken" last="Aho">Ken Aho</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25629158</idno>
<idno type="pmid">25629158</idno>
<idno type="doi">10.1371/journal.pone.0117026</idno>
<idno type="pmc">PMC4309613</idno>
<idno type="wicri:Area/Main/Corpus">001575</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001575</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.</title>
<author>
<name sortKey="Weber, Carolyn F" sort="Weber, Carolyn F" uniqKey="Weber C" first="Carolyn F" last="Weber">Carolyn F. Weber</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="King, Gary M" sort="King, Gary M" uniqKey="King G" first="Gary M" last="King">Gary M. King</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aho, Ken" sort="Aho, Ken" uniqKey="Aho K" first="Ken" last="Aho">Ken Aho</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Artemisia (MeSH)</term>
<term>Bromus (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Introduced Species (MeSH)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>United States (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Artemisia</term>
<term>Bromus</term>
<term>Ecosystem</term>
<term>Introduced Species</term>
<term>Soil Microbiology</term>
<term>United States</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and sagebrush-dominated soils warrant future research to examine soil fungal community composition across more sites and time points as well as in association with native grass species that also occupy cheatgrass-invaded ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25629158</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.</ArticleTitle>
<Pagination>
<MedlinePgn>e0117026</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0117026</ELocationID>
<Abstract>
<AbstractText>Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and sagebrush-dominated soils warrant future research to examine soil fungal community composition across more sites and time points as well as in association with native grass species that also occupy cheatgrass-invaded ecosystems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weber</LastName>
<ForeName>Carolyn F</ForeName>
<Initials>CF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Gary M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aho</LastName>
<ForeName>Ken</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019306" MajorTopicYN="Y">Artemisia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031724" MajorTopicYN="Y">Bromus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="N">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25629158</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0117026</ArticleId>
<ArticleId IdType="pii">PONE-D-14-34293</ArticleId>
<ArticleId IdType="pmc">PMC4309613</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1854-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 May;53(4):579-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17410394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2007 May;1(1):28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 May;74(9):2805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Aug;2(8):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 May;12(5):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19320689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):999-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jul;4(7):872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Jan-Feb;103(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Sep-Oct;94(5):761-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2011 Feb;19(2):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Mar;78(5):1523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Feb;23(2):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22864708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Dec;78(24):8587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(12):e1003037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Apr 09;4:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 May;24(4):301-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jun;94(3):314-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001575 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001575 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25629158
   |texte=   Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25629158" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020