Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.

Identifieur interne : 001542 ( Main/Corpus ); précédent : 001541; suivant : 001543

High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.

Auteurs : Jerry A. Mensah ; Alexander M. Koch ; Pedro M. Antunes ; E Toby Kiers ; Miranda Hart ; Heike Bücking

Source :

RBID : pubmed:25708401

English descriptors

Abstract

Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.

DOI: 10.1007/s00572-015-0631-x
PubMed: 25708401

Links to Exploration step

pubmed:25708401

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.</title>
<author>
<name sortKey="Mensah, Jerry A" sort="Mensah, Jerry A" uniqKey="Mensah J" first="Jerry A" last="Mensah">Jerry A. Mensah</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koch, Alexander M" sort="Koch, Alexander M" uniqKey="Koch A" first="Alexander M" last="Koch">Alexander M. Koch</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Antunes, Pedro M" sort="Antunes, Pedro M" uniqKey="Antunes P" first="Pedro M" last="Antunes">Pedro M. Antunes</name>
<affiliation>
<nlm:affiliation>Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hart, Miranda" sort="Hart, Miranda" uniqKey="Hart M" first="Miranda" last="Hart">Miranda Hart</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA. Heike.Bucking@sdstate.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25708401</idno>
<idno type="pmid">25708401</idno>
<idno type="doi">10.1007/s00572-015-0631-x</idno>
<idno type="wicri:Area/Main/Corpus">001542</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001542</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.</title>
<author>
<name sortKey="Mensah, Jerry A" sort="Mensah, Jerry A" uniqKey="Mensah J" first="Jerry A" last="Mensah">Jerry A. Mensah</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koch, Alexander M" sort="Koch, Alexander M" uniqKey="Koch A" first="Alexander M" last="Koch">Alexander M. Koch</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Antunes, Pedro M" sort="Antunes, Pedro M" uniqKey="Antunes P" first="Pedro M" last="Antunes">Pedro M. Antunes</name>
<affiliation>
<nlm:affiliation>Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hart, Miranda" sort="Hart, Miranda" uniqKey="Hart M" first="Miranda" last="Hart">Miranda Hart</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucking, Heike" sort="Bucking, Heike" uniqKey="Bucking H" first="Heike" last="Bücking">Heike Bücking</name>
<affiliation>
<nlm:affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA. Heike.Bucking@sdstate.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Medicago sativa (microbiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago sativa</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25708401</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>533-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-015-0631-x</ELocationID>
<Abstract>
<AbstractText>Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mensah</LastName>
<ForeName>Jerry A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koch</LastName>
<ForeName>Alexander M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Antunes</LastName>
<ForeName>Pedro M</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kiers</LastName>
<ForeName>E Toby</ForeName>
<Initials>ET</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hart</LastName>
<ForeName>Miranda</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bücking</LastName>
<ForeName>Heike</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA. Heike.Bucking@sdstate.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000455" MajorTopicYN="N">Medicago sativa</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">Fungal diversity</Keyword>
<Keyword MajorTopicYN="N">Glomeromycota</Keyword>
<Keyword MajorTopicYN="N">Nitrogen</Keyword>
<Keyword MajorTopicYN="N">Nutrient uptake and transport</Keyword>
<Keyword MajorTopicYN="N">Phosphate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25708401</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-015-0631-x</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-015-0631-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(2):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:227-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21391813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Apr;229(5):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1984 Dec;3(6):234-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Mar;101(3):1063-1071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):869-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Nov;7(11):1509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22990447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):899-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Mar;55(3):242-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19370067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Jul 13;20(13):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Jan 1;172:55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25239593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2004 Apr;50(4):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15213749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):188-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Feb;9(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Dec 7;276(1676):4237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24787049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):1176-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19496945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(7):1497-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Feb;23(2):107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22810583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2007 Jul 1;379(2-3):226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17157359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):452-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18643898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(4):e1002600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Nov;204(3):638-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 07;9(6):e90841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24608923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):853-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 May 15;328(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001542 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001542 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25708401
   |texte=   High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25708401" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020