Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.

Identifieur interne : 001369 ( Main/Corpus ); précédent : 001368; suivant : 001370

Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.

Auteurs : Courtney G. Collins ; S Joseph Wright ; Nina Wurzburger

Source :

RBID : pubmed:26254258

English descriptors

Abstract

In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests.

DOI: 10.1007/s00442-015-3410-7
PubMed: 26254258

Links to Exploration step

pubmed:26254258

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.</title>
<author>
<name sortKey="Collins, Courtney G" sort="Collins, Courtney G" uniqKey="Collins C" first="Courtney G" last="Collins">Courtney G. Collins</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA. courtneygrace125@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wright, S Joseph" sort="Wright, S Joseph" uniqKey="Wright S" first="S Joseph" last="Wright">S Joseph Wright</name>
<affiliation>
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Ancon, Panama.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wurzburger, Nina" sort="Wurzburger, Nina" uniqKey="Wurzburger N" first="Nina" last="Wurzburger">Nina Wurzburger</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26254258</idno>
<idno type="pmid">26254258</idno>
<idno type="doi">10.1007/s00442-015-3410-7</idno>
<idno type="wicri:Area/Main/Corpus">001369</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001369</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.</title>
<author>
<name sortKey="Collins, Courtney G" sort="Collins, Courtney G" uniqKey="Collins C" first="Courtney G" last="Collins">Courtney G. Collins</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA. courtneygrace125@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wright, S Joseph" sort="Wright, S Joseph" uniqKey="Wright S" first="S Joseph" last="Wright">S Joseph Wright</name>
<affiliation>
<nlm:affiliation>Smithsonian Tropical Research Institute, Balboa, Ancon, Panama.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wurzburger, Nina" sort="Wurzburger, Nina" uniqKey="Wurzburger N" first="Nina" last="Wurzburger">Nina Wurzburger</name>
<affiliation>
<nlm:affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Environment (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Roots (anatomy & histology)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (physiology)</term>
<term>Plants (anatomy & histology)</term>
<term>Plants (metabolism)</term>
<term>Trees (physiology)</term>
<term>Tropical Climate (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Forests</term>
<term>Mycorrhizae</term>
<term>Phenotype</term>
<term>Tropical Climate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">26254258</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.</ArticleTitle>
<Pagination>
<MedlinePgn>1037-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-015-3410-7</ELocationID>
<Abstract>
<AbstractText>In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Collins</LastName>
<ForeName>Courtney G</ForeName>
<Initials>CG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5455-172X</Identifier>
<AffiliationInfo>
<Affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA. courtneygrace125@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>S Joseph</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Tropical Research Institute, Balboa, Ancon, Panama.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wurzburger</LastName>
<ForeName>Nina</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="Y">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014329" MajorTopicYN="Y">Tropical Climate</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Economic spectrum</Keyword>
<Keyword MajorTopicYN="N">Mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Specific leaf area</Keyword>
<Keyword MajorTopicYN="N">Specific root length</Keyword>
<Keyword MajorTopicYN="N">Trade-offs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26254258</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-015-3410-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-015-3410-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2010 Dec;91(12):3664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21302837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Biol Rep. 2011;3:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 Jun;95(6):1604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Dec;88(4):486-493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22106283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Apr;14(4):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21314879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):640-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22709147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e52114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23284889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Dec;79(4):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Aug 15;418(6899):770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12181565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19841276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Dec;137(4):547-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 May;186(3):708-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20298481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1573-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 16;5:205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 10;340(6133):741-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):823-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22686426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 May;21(5):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2004 May;163(5):654-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2015 Aug;96(8):2137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26405739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Jul;163(3):591-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Aug;4(15):2979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25247056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2014 Apr 30;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24938305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Apr;21(4):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 May;11(5):516-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18279352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2005 Aug;166(2):262-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16032578</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001369 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001369 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26254258
   |texte=   Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26254258" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020