Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.

Identifieur interne : 001270 ( Main/Corpus ); précédent : 001269; suivant : 001271

Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.

Auteurs : Natalija Hohnjec ; Lisa F. Czaja-Hasse ; Claudia Hogekamp ; Helge Küster

Source :

RBID : pubmed:26597293

English descriptors

Abstract

BACKGROUND

More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling.

RESULTS

We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization.

CONCLUSIONS

Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.


DOI: 10.1186/s12864-015-2224-7
PubMed: 26597293
PubMed Central: PMC4657205

Links to Exploration step

pubmed:26597293

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.</title>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. natalija.hohnjec@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Czaja Hasse, Lisa F" sort="Czaja Hasse, Lisa F" uniqKey="Czaja Hasse L" first="Lisa F" last="Czaja-Hasse">Lisa F. Czaja-Hasse</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. czaja@mpipz.mpg.de.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany. czaja@mpipz.mpg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogekamp, Claudia" sort="Hogekamp, Claudia" uniqKey="Hogekamp C" first="Claudia" last="Hogekamp">Claudia Hogekamp</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. claudia.hogekamp@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. helge.kuester@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26597293</idno>
<idno type="pmid">26597293</idno>
<idno type="doi">10.1186/s12864-015-2224-7</idno>
<idno type="pmc">PMC4657205</idno>
<idno type="wicri:Area/Main/Corpus">001270</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001270</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.</title>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. natalija.hohnjec@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Czaja Hasse, Lisa F" sort="Czaja Hasse, Lisa F" uniqKey="Czaja Hasse L" first="Lisa F" last="Czaja-Hasse">Lisa F. Czaja-Hasse</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. czaja@mpipz.mpg.de.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany. czaja@mpipz.mpg.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hogekamp, Claudia" sort="Hogekamp, Claudia" uniqKey="Hogekamp C" first="Claudia" last="Hogekamp">Claudia Hogekamp</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. claudia.hogekamp@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
<affiliation>
<nlm:affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. helge.kuester@genetik.uni-hannover.de.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genome, Plant (MeSH)</term>
<term>Glomeromycota (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Lipopolysaccharides (metabolism)</term>
<term>Lipopolysaccharides (pharmacology)</term>
<term>Medicago truncatula (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genome, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26597293</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.</ArticleTitle>
<Pagination>
<MedlinePgn>994</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-2224-7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hohnjec</LastName>
<ForeName>Natalija</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. natalija.hohnjec@genetik.uni-hannover.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Czaja-Hasse</LastName>
<ForeName>Lisa F</ForeName>
<Initials>LF</Initials>
<AffiliationInfo>
<Affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. czaja@mpipz.mpg.de.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany. czaja@mpipz.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hogekamp</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. claudia.hogekamp@genetik.uni-hannover.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Küster</LastName>
<ForeName>Helge</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institut für Pflanzengenetik, Abt. IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany. helge.kuester@genetik.uni-hannover.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE67167</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C023023">lipid-linked oligosaccharides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26597293</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-2224-7</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-2224-7</ArticleId>
<ArticleId IdType="pmc">PMC4657205</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Signal Behav. 2013 Oct;8(10). pii: e26049. doi: 10.4161/psb.26049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Dec;25(12):5053-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24368786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014;15:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Nov;55(11):1864-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25231970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):833-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Feb 12;15(2):139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2014 Mar;56(3):250-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24386977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jan;81(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jan;56(1):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014;14:333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):854-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Mar;20(3):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Mar;27(3):823-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):788-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25971550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(1):224-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25919491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):737-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):19-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1600-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Mar 10;140(1-2):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Feb;185(3):716-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):642-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010;1:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Aug;24(8):867-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21469937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Aug;16(4):473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23834765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Sep;6(5):1381-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Oct;54(10):1711-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23926062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001270 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001270 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26597293
   |texte=   Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26597293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020