Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.

Identifieur interne : 001269 ( Main/Corpus ); précédent : 001268; suivant : 001270

Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.

Auteurs : Hirokazu Toju ; Paulo R. Guimarães ; Jens M. Olesen ; John N. Thompson

Source :

RBID : pubmed:26601279

Abstract

In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant-fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant-partner networks. Specifically, plant-fungus networks lacked a "nested" architecture, which has been considered to promote species coexistence in plant-partner networks. Rather, the below-ground networks had a conspicuous "antinested" topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions.

DOI: 10.1126/sciadv.1500291
PubMed: 26601279
PubMed Central: PMC4646793

Links to Exploration step

pubmed:26601279

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.</title>
<author>
<name sortKey="Toju, Hirokazu" sort="Toju, Hirokazu" uniqKey="Toju H" first="Hirokazu" last="Toju">Hirokazu Toju</name>
<affiliation>
<nlm:affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guimaraes, Paulo R" sort="Guimaraes, Paulo R" uniqKey="Guimaraes P" first="Paulo R" last="Guimarães">Paulo R. Guimarães</name>
<affiliation>
<nlm:affiliation>Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olesen, Jens M" sort="Olesen, Jens M" uniqKey="Olesen J" first="Jens M" last="Olesen">Jens M. Olesen</name>
<affiliation>
<nlm:affiliation>Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, John N" sort="Thompson, John N" uniqKey="Thompson J" first="John N" last="Thompson">John N. Thompson</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26601279</idno>
<idno type="pmid">26601279</idno>
<idno type="doi">10.1126/sciadv.1500291</idno>
<idno type="pmc">PMC4646793</idno>
<idno type="wicri:Area/Main/Corpus">001269</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001269</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.</title>
<author>
<name sortKey="Toju, Hirokazu" sort="Toju, Hirokazu" uniqKey="Toju H" first="Hirokazu" last="Toju">Hirokazu Toju</name>
<affiliation>
<nlm:affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guimaraes, Paulo R" sort="Guimaraes, Paulo R" uniqKey="Guimaraes P" first="Paulo R" last="Guimarães">Paulo R. Guimarães</name>
<affiliation>
<nlm:affiliation>Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olesen, Jens M" sort="Olesen, Jens M" uniqKey="Olesen J" first="Jens M" last="Olesen">Jens M. Olesen</name>
<affiliation>
<nlm:affiliation>Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thompson, John N" sort="Thompson, John N" uniqKey="Thompson J" first="John N" last="Thompson">John N. Thompson</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Science advances</title>
<idno type="ISSN">2375-2548</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant-fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant-partner networks. Specifically, plant-fungus networks lacked a "nested" architecture, which has been considered to promote species coexistence in plant-partner networks. Rather, the below-ground networks had a conspicuous "antinested" topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26601279</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2375-2548</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Science advances</Title>
<ISOAbbreviation>Sci Adv</ISOAbbreviation>
</Journal>
<ArticleTitle>Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.</ArticleTitle>
<Pagination>
<MedlinePgn>e1500291</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1126/sciadv.1500291</ELocationID>
<Abstract>
<AbstractText>In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant-fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant-partner networks. Specifically, plant-fungus networks lacked a "nested" architecture, which has been considered to promote species coexistence in plant-partner networks. Rather, the below-ground networks had a conspicuous "antinested" topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Toju</LastName>
<ForeName>Hirokazu</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guimarães</LastName>
<ForeName>Paulo R</ForeName>
<Initials>PR</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Olesen</LastName>
<ForeName>Jens M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>John N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Sci Adv</MedlineTA>
<NlmUniqueID>101653440</NlmUniqueID>
<ISSNLinking>2375-2548</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA barcoding</Keyword>
<Keyword MajorTopicYN="N">Ecology</Keyword>
<Keyword MajorTopicYN="N">community stability</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">mutualism</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">network</Keyword>
<Keyword MajorTopicYN="N">plant communities</Keyword>
<Keyword MajorTopicYN="N">soil ecology</Keyword>
<Keyword MajorTopicYN="N">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26601279</ArticleId>
<ArticleId IdType="doi">10.1126/sciadv.1500291</ArticleId>
<ArticleId IdType="pii">1500291</ArticleId>
<ArticleId IdType="pmc">PMC4646793</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Apr 23;458(7241):1018-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 11;304(5677):1629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15192218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22468223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):835-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22943426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(2):536-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22269207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 10;9(6):e98679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24914678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2008 May 26;4:193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 20;5:5273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25327887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Sep;3(9):3112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Sep;91(3):419-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Feb 19;483(7388):205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22343894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(2):307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22269121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 28;9(1):e86566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24489745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16390428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 21;8(10):e78248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24250752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 17;8(12):e83241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24358265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Apr;21(8):1931-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22171763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Feb 20;17(4):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17275300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 22;500(7463):449-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23969462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Aug;18(8):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26032408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Feb;18(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18157555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Oct;78(1):103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14995526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 14;478(7368):233-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(2):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Mar;17(3):350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24386999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Stat Mech. 2005 Feb 1;2005(P02001):nihpa35573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18159217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 08;6(4):e18209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Sep;14(9):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 May;3(5):1281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23762515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 13;329(5993):853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20705861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jul;87(7):1627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16922314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 06;9(5):e96363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24801150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17949981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Apr;17 (4):454-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24467289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 25;345(6195):1253497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25061214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Nov;14(11):1170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21951949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20673286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 20;337(6092):349-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2010 Jul;79(4):811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18233893</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001269 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001269 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26601279
   |texte=   Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26601279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020