Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

Identifieur interne : 001091 ( Main/Corpus ); précédent : 001090; suivant : 001092

Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

Auteurs : Rosa Porcel ; Ricardo Aroca ; Rosario Azcon ; Juan Manuel Ruiz-Lozano

Source :

RBID : pubmed:27113587

English descriptors

Abstract

Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.

DOI: 10.1007/s00572-016-0704-5
PubMed: 27113587

Links to Exploration step

pubmed:27113587

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.</title>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azcon, Rosario" sort="Azcon, Rosario" uniqKey="Azcon R" first="Rosario" last="Azcon">Rosario Azcon</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain. juanmanuel.ruiz@eez.csic.es.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27113587</idno>
<idno type="pmid">27113587</idno>
<idno type="doi">10.1007/s00572-016-0704-5</idno>
<idno type="wicri:Area/Main/Corpus">001091</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001091</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.</title>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Azcon, Rosario" sort="Azcon, Rosario" uniqKey="Azcon R" first="Rosario" last="Azcon">Rosario Azcon</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain. juanmanuel.ruiz@eez.csic.es.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cation Transport Proteins (genetics)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Oryza (microbiology)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (metabolism)</term>
<term>Salinity (MeSH)</term>
<term>Salt Tolerance (MeSH)</term>
<term>Sodium (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Tissue Distribution (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Fungal Proteins</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Salinity</term>
<term>Salt Tolerance</term>
<term>Symbiosis</term>
<term>Tissue Distribution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27113587</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.</ArticleTitle>
<Pagination>
<MedlinePgn>673-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-016-0704-5</ELocationID>
<Abstract>
<AbstractText>Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Porcel</LastName>
<ForeName>Rosa</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azcon</LastName>
<ForeName>Rosario</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain. juanmanuel.ruiz@eez.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="Y">Salt Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="N">Ion homeostasis</Keyword>
<Keyword MajorTopicYN="N">Plant tolerance</Keyword>
<Keyword MajorTopicYN="N">Salinity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27113587</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-016-0704-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-016-0704-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jun;34(6):947-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 Dec;149(4):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23611560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(5):1181-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Apr;30(4):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):808-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Sep;164(9):1144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Jun 5;236(4806):1299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17770331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Aug 1;185:75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Feb;67(3):835-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26585227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Oct;37(10):1141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Jan;12(1):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Dec;104(7):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Aug;133(4):651-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Apr;22(3):203-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1171-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Mar;201-202:42-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23352401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Sep;18(6-7):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(16):5727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22991159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Aug;11(8):372-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Nov;54(4):753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24151301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20499112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):175-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20963607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2013 Oct 28;6(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24280112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Oct 30;514(7524):S58-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Sep;226:2-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25113445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jan;23(1):71-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 17;5:562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Oct;36(10):1771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jun;34(6):788-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jan 1;170(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102876</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001091 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001091 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27113587
   |texte=   Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27113587" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020