Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).

Identifieur interne : 000F43 ( Main/Corpus ); précédent : 000F42; suivant : 000F44

Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).

Auteurs : Abeer Hashem ; E F Abd Allah ; A A Alqarawi ; A A Al-Huqail ; M A Shah

Source :

RBID : pubmed:27597969

English descriptors

Abstract

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium, Bacillus subtilis (BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum; Rhizophagus intraradices; and Funneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardii Benth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction between B. subtilis and AMF vis-a-vis improvement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).

DOI: 10.1155/2016/6294098
PubMed: 27597969
PubMed Central: PMC5002495

Links to Exploration step

pubmed:27597969

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).</title>
<author>
<name sortKey="Hashem, Abeer" sort="Hashem, Abeer" uniqKey="Hashem A" first="Abeer" last="Hashem">Abeer Hashem</name>
<affiliation>
<nlm:affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; Mycology & Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abd Allah, E F" sort="Abd Allah, E F" uniqKey="Abd Allah E" first="E F" last="Abd Allah">E F Abd Allah</name>
<affiliation>
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia; Seed Pathology Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alqarawi, A A" sort="Alqarawi, A A" uniqKey="Alqarawi A" first="A A" last="Alqarawi">A A Alqarawi</name>
<affiliation>
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Huqail, A A" sort="Al Huqail, A A" uniqKey="Al Huqail A" first="A A" last="Al-Huqail">A A Al-Huqail</name>
<affiliation>
<nlm:affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shah, M A" sort="Shah, M A" uniqKey="Shah M" first="M A" last="Shah">M A Shah</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190001, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27597969</idno>
<idno type="pmid">27597969</idno>
<idno type="doi">10.1155/2016/6294098</idno>
<idno type="pmc">PMC5002495</idno>
<idno type="wicri:Area/Main/Corpus">000F43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).</title>
<author>
<name sortKey="Hashem, Abeer" sort="Hashem, Abeer" uniqKey="Hashem A" first="Abeer" last="Hashem">Abeer Hashem</name>
<affiliation>
<nlm:affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; Mycology & Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abd Allah, E F" sort="Abd Allah, E F" uniqKey="Abd Allah E" first="E F" last="Abd Allah">E F Abd Allah</name>
<affiliation>
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia; Seed Pathology Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alqarawi, A A" sort="Alqarawi, A A" uniqKey="Alqarawi A" first="A A" last="Alqarawi">A A Alqarawi</name>
<affiliation>
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Huqail, A A" sort="Al Huqail, A A" uniqKey="Al Huqail A" first="A A" last="Al-Huqail">A A Al-Huqail</name>
<affiliation>
<nlm:affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shah, M A" sort="Shah, M A" uniqKey="Shah M" first="M A" last="Shah">M A Shah</name>
<affiliation>
<nlm:affiliation>Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190001, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioMed research international</title>
<idno type="eISSN">2314-6141</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (metabolism)</term>
<term>Acacia (physiology)</term>
<term>Antioxidants (metabolism)</term>
<term>Bacillus subtilis (physiology)</term>
<term>Fungi (physiology)</term>
<term>Lipid Peroxidation (physiology)</term>
<term>Lipids (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Osmoregulation (physiology)</term>
<term>Phenols (metabolism)</term>
<term>Plant Roots (physiology)</term>
<term>Salinity (MeSH)</term>
<term>Salt Tolerance (physiology)</term>
<term>Salts (metabolism)</term>
<term>Stress, Physiological (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Phenols</term>
<term>Salts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Acacia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acacia</term>
<term>Bacillus subtilis</term>
<term>Fungi</term>
<term>Lipid Peroxidation</term>
<term>Lipids</term>
<term>Mycorrhizae</term>
<term>Osmoregulation</term>
<term>Plant Roots</term>
<term>Salt Tolerance</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Salinity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium, Bacillus subtilis (BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum; Rhizophagus intraradices; and Funneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardii Benth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction between B. subtilis and AMF vis-a-vis improvement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR). </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27597969</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2314-6141</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2016</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>BioMed research international</Title>
<ISOAbbreviation>Biomed Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).</ArticleTitle>
<Pagination>
<MedlinePgn>6294098</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2016/6294098</ELocationID>
<Abstract>
<AbstractText>The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium, Bacillus subtilis (BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum; Rhizophagus intraradices; and Funneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardii Benth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction between B. subtilis and AMF vis-a-vis improvement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR). </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hashem</LastName>
<ForeName>Abeer</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; Mycology & Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abd Allah</LastName>
<ForeName>E F</ForeName>
<Initials>EF</Initials>
<Identifier Source="ORCID">0000-0002-8509-8953</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia; Seed Pathology Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alqarawi</LastName>
<ForeName>A A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, P.O. Box 2460, Riyadh 11451, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Al-Huqail</LastName>
<ForeName>A A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190001, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biomed Res Int</MedlineTA>
<NlmUniqueID>101600173</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012492">Salts</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015227" MajorTopicYN="N">Lipid Peroxidation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064587" MajorTopicYN="N">Osmoregulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012492" MajorTopicYN="N">Salts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27597969</ArticleId>
<ArticleId IdType="doi">10.1155/2016/6294098</ArticleId>
<ArticleId IdType="pmc">PMC5002495</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2012 Aug 15;53(4):710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22683602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Oct;23(7):515-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Nov;58(4):921-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19466478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):315-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 31;7:347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27066020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2012 Dec;35(4 (suppl)):1011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23412747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Apr;125(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5655425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 14;6:868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26528324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2014 Apr;20(2):201-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24757324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Dec;242(6):1361-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 2008;13(6):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1951 Nov;193(1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14907713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 May;82(1-2):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Apr 15;178:84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25800225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Jan 1;170(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Biol. 2003 Jan;24(1):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12974420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Feb;57(2):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000F43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27597969
   |texte=   Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27597969" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020