Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.

Identifieur interne : 000E76 ( Main/Corpus ); précédent : 000E75; suivant : 000E77

Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.

Auteurs : Martin B. Nadeau ; Damase P Khasa

Source :

RBID : pubmed:27835688

English descriptors

Abstract

Little is known about edaphic selection pressures as drivers of contrasting white spruce ectomycorrhizal fungal community structure and diversity in the Canadian boreal forest. We hypothesized that community composition differs among the four sites sampled-nursery, mining site, forest edge, and natural forest. Ectomycorrhizal (ECM) fungal community structure and diversity was studied at the four locations with soil fertility gradient through morpho-molecular and phylogenetic analyses in relationships with rhizospheric soil chemical properties. 41 different species were identified. Mining site had a significantly different species composition than the surrounding environments. Soil pH and percentage of roots colonized by ECM fungi increased while soil P, N, Fe, C, K, Mg, Al, Ca, and Na contents declined across the soil fertility gradient: nursery → natural forest → forest edge → mining site. Contrary to the preference of acid soils by ECM fungi, a few ecologically adapted to high pH, poor soil chemical fertility, and low organic matter content colonize white spruce roots on the non-acidogenic mining site, allowing natural regeneration of white spruce seedlings. Other ECM fungi are adapted to high fertigation level of commercial nursery. This study clearly shows the contrasting difference in white spruce ectomycorrhizal fungal community structure and diversity driven by edaphic selection pressures.

DOI: 10.1371/journal.pone.0166420
PubMed: 27835688
PubMed Central: PMC5106017

Links to Exploration step

pubmed:27835688

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.</title>
<author>
<name sortKey="Nadeau, Martin B" sort="Nadeau, Martin B" uniqKey="Nadeau M" first="Martin B" last="Nadeau">Martin B. Nadeau</name>
<affiliation>
<nlm:affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="P Khasa, Damase" sort="P Khasa, Damase" uniqKey="P Khasa D" first="Damase" last="P Khasa">Damase P Khasa</name>
<affiliation>
<nlm:affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27835688</idno>
<idno type="pmid">27835688</idno>
<idno type="doi">10.1371/journal.pone.0166420</idno>
<idno type="pmc">PMC5106017</idno>
<idno type="wicri:Area/Main/Corpus">000E76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.</title>
<author>
<name sortKey="Nadeau, Martin B" sort="Nadeau, Martin B" uniqKey="Nadeau M" first="Martin B" last="Nadeau">Martin B. Nadeau</name>
<affiliation>
<nlm:affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="P Khasa, Damase" sort="P Khasa, Damase" uniqKey="P Khasa D" first="Damase" last="P Khasa">Damase P Khasa</name>
<affiliation>
<nlm:affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Canada (MeSH)</term>
<term>DNA, Fungal (genetics)</term>
<term>DNA, Fungal (isolation & purification)</term>
<term>Genetic Variation (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Metals, Alkaline Earth (analysis)</term>
<term>Microbial Consortia (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Picea (growth & development)</term>
<term>Picea (microbiology)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Taiga (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metals, Alkaline Earth</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Picea</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Picea</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Canada</term>
<term>Genetic Variation</term>
<term>Hydrogen-Ion Concentration</term>
<term>Microbial Consortia</term>
<term>Phylogeny</term>
<term>Selection, Genetic</term>
<term>Soil Microbiology</term>
<term>Taiga</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Little is known about edaphic selection pressures as drivers of contrasting white spruce ectomycorrhizal fungal community structure and diversity in the Canadian boreal forest. We hypothesized that community composition differs among the four sites sampled-nursery, mining site, forest edge, and natural forest. Ectomycorrhizal (ECM) fungal community structure and diversity was studied at the four locations with soil fertility gradient through morpho-molecular and phylogenetic analyses in relationships with rhizospheric soil chemical properties. 41 different species were identified. Mining site had a significantly different species composition than the surrounding environments. Soil pH and percentage of roots colonized by ECM fungi increased while soil P, N, Fe, C, K, Mg, Al, Ca, and Na contents declined across the soil fertility gradient: nursery → natural forest → forest edge → mining site. Contrary to the preference of acid soils by ECM fungi, a few ecologically adapted to high pH, poor soil chemical fertility, and low organic matter content colonize white spruce roots on the non-acidogenic mining site, allowing natural regeneration of white spruce seedlings. Other ECM fungi are adapted to high fertigation level of commercial nursery. This study clearly shows the contrasting difference in white spruce ectomycorrhizal fungal community structure and diversity driven by edaphic selection pressures.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27835688</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.</ArticleTitle>
<Pagination>
<MedlinePgn>e0166420</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0166420</ELocationID>
<Abstract>
<AbstractText>Little is known about edaphic selection pressures as drivers of contrasting white spruce ectomycorrhizal fungal community structure and diversity in the Canadian boreal forest. We hypothesized that community composition differs among the four sites sampled-nursery, mining site, forest edge, and natural forest. Ectomycorrhizal (ECM) fungal community structure and diversity was studied at the four locations with soil fertility gradient through morpho-molecular and phylogenetic analyses in relationships with rhizospheric soil chemical properties. 41 different species were identified. Mining site had a significantly different species composition than the surrounding environments. Soil pH and percentage of roots colonized by ECM fungi increased while soil P, N, Fe, C, K, Mg, Al, Ca, and Na contents declined across the soil fertility gradient: nursery → natural forest → forest edge → mining site. Contrary to the preference of acid soils by ECM fungi, a few ecologically adapted to high pH, poor soil chemical fertility, and low organic matter content colonize white spruce roots on the non-acidogenic mining site, allowing natural regeneration of white spruce seedlings. Other ECM fungi are adapted to high fertigation level of commercial nursery. This study clearly shows the contrasting difference in white spruce ectomycorrhizal fungal community structure and diversity driven by edaphic selection pressures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nadeau</LastName>
<ForeName>Martin B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>P Khasa</LastName>
<ForeName>Damase</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008673">Metals, Alkaline Earth</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002170" MajorTopicYN="N">Canada</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008673" MajorTopicYN="N">Metals, Alkaline Earth</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059013" MajorTopicYN="N">Microbial Consortia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066188" MajorTopicYN="N">Taiga</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27835688</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0166420</ArticleId>
<ArticleId IdType="pii">PONE-D-16-10731</ArticleId>
<ArticleId IdType="pmc">PMC5106017</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2009 Jun;19(5):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Nov;22(8):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22451218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Sep;112(Pt 9):1069-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:271-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Feb;45(2):128-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12545311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Jan;92(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26622067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geobiology. 2012 Sep;10(5):445-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(2):465-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):815-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Jul;52(1):114-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16699911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Nov;71(11):7279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Jan;150(4):590-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Apr;19(4):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19139932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Apr;20(4):217-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2016 Jul;62(7):543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27170470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Feb;19(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18941804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20673286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(4):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27835688
   |texte=   Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27835688" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020