Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.

Identifieur interne : 000E28 ( Main/Corpus ); précédent : 000E27; suivant : 000E29

The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.

Auteurs : Miwa Nagae ; Martin Parniske ; Masayoshi Kawaguchi ; Naoya Takeda

Source :

RBID : pubmed:27977319

English descriptors

Abstract

Lotus japonicus THIC is expressed in all organs, and the encoded protein catalyzes thiamine biosynthesis. Loss of function produces chlorosis, a typical thiamine-deficiency phenotype, and mortality. To investigate thiamine's role in symbiosis, we focused on THI1, a thiamine-biosynthesis gene expressed in roots, nodules, and seeds. The thi1 mutant had green leaves, but formed small nodules and immature seeds. These phenotypes were rescued by THI1 complementation and by exogenous thiamine. Thus, THI1 is required for nodule enlargement and seed maturation. On the other hand, colonization by arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis was not affected in the thi1 mutant or by exogenous thiamine. However, spores of R. irregularis stored more thiamine than the source (host plants), despite lacking thiamine biosynthesis genes. Therefore, disturbance of the thiamine supply would affect progeny phenotypes such as spore formation and hyphal growth. Further investigation will be required to elucidate thiamine's effect on AM.

DOI: 10.1080/15592324.2016.1265723
PubMed: 27977319
PubMed Central: PMC5225936

Links to Exploration step

pubmed:27977319

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.</title>
<author>
<name sortKey="Nagae, Miwa" sort="Nagae, Miwa" uniqKey="Nagae M" first="Miwa" last="Nagae">Miwa Nagae</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parniske, Martin" sort="Parniske, Martin" uniqKey="Parniske M" first="Martin" last="Parniske">Martin Parniske</name>
<affiliation>
<nlm:affiliation>b Genetics, Faculty of Biology, University of Munich (LMU) , Martinsried , Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawaguchi, Masayoshi" sort="Kawaguchi, Masayoshi" uniqKey="Kawaguchi M" first="Masayoshi" last="Kawaguchi">Masayoshi Kawaguchi</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Takeda, Naoya" sort="Takeda, Naoya" uniqKey="Takeda N" first="Naoya" last="Takeda">Naoya Takeda</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27977319</idno>
<idno type="pmid">27977319</idno>
<idno type="doi">10.1080/15592324.2016.1265723</idno>
<idno type="pmc">PMC5225936</idno>
<idno type="wicri:Area/Main/Corpus">000E28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.</title>
<author>
<name sortKey="Nagae, Miwa" sort="Nagae, Miwa" uniqKey="Nagae M" first="Miwa" last="Nagae">Miwa Nagae</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parniske, Martin" sort="Parniske, Martin" uniqKey="Parniske M" first="Martin" last="Parniske">Martin Parniske</name>
<affiliation>
<nlm:affiliation>b Genetics, Faculty of Biology, University of Munich (LMU) , Martinsried , Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawaguchi, Masayoshi" sort="Kawaguchi, Masayoshi" uniqKey="Kawaguchi M" first="Masayoshi" last="Kawaguchi">Masayoshi Kawaguchi</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Takeda, Naoya" sort="Takeda, Naoya" uniqKey="Takeda N" first="Naoya" last="Takeda">Naoya Takeda</name>
<affiliation>
<nlm:affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Lotus (metabolism)</term>
<term>Lotus (microbiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Root Nodules, Plant (metabolism)</term>
<term>Root Nodules, Plant (microbiology)</term>
<term>Symbiosis (physiology)</term>
<term>Thiamine (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Thiamine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lotus</term>
<term>Plant Roots</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lotus</term>
<term>Plant Roots</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lotus japonicus THIC is expressed in all organs, and the encoded protein catalyzes thiamine biosynthesis. Loss of function produces chlorosis, a typical thiamine-deficiency phenotype, and mortality. To investigate thiamine's role in symbiosis, we focused on THI1, a thiamine-biosynthesis gene expressed in roots, nodules, and seeds. The thi1 mutant had green leaves, but formed small nodules and immature seeds. These phenotypes were rescued by THI1 complementation and by exogenous thiamine. Thus, THI1 is required for nodule enlargement and seed maturation. On the other hand, colonization by arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis was not affected in the thi1 mutant or by exogenous thiamine. However, spores of R. irregularis stored more thiamine than the source (host plants), despite lacking thiamine biosynthesis genes. Therefore, disturbance of the thiamine supply would affect progeny phenotypes such as spore formation and hyphal growth. Further investigation will be required to elucidate thiamine's effect on AM.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27977319</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.</ArticleTitle>
<Pagination>
<MedlinePgn>e1265723</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15592324.2016.1265723</ELocationID>
<Abstract>
<AbstractText>Lotus japonicus THIC is expressed in all organs, and the encoded protein catalyzes thiamine biosynthesis. Loss of function produces chlorosis, a typical thiamine-deficiency phenotype, and mortality. To investigate thiamine's role in symbiosis, we focused on THI1, a thiamine-biosynthesis gene expressed in roots, nodules, and seeds. The thi1 mutant had green leaves, but formed small nodules and immature seeds. These phenotypes were rescued by THI1 complementation and by exogenous thiamine. Thus, THI1 is required for nodule enlargement and seed maturation. On the other hand, colonization by arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis was not affected in the thi1 mutant or by exogenous thiamine. However, spores of R. irregularis stored more thiamine than the source (host plants), despite lacking thiamine biosynthesis genes. Therefore, disturbance of the thiamine supply would affect progeny phenotypes such as spore formation and hyphal growth. Further investigation will be required to elucidate thiamine's effect on AM.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nagae</LastName>
<ForeName>Miwa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parniske</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>b Genetics, Faculty of Biology, University of Munich (LMU) , Martinsried , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawaguchi</LastName>
<ForeName>Masayoshi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takeda</LastName>
<ForeName>Naoya</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>a Division of Symbiotic Systems, National Institute for Basic Biology , Myodaiji, Okazaki , Aichi , Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>c Department of Basic Biology , School of Life Science, Graduate University for Advanced Studies (SOKENDAI) , Myodaiji, Okazaki , Aichi , Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X66NSO3N35</RegistryNumber>
<NameOfSubstance UI="D013831">Thiamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000070116" MajorTopicYN="N">Lotus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013831" MajorTopicYN="N">Thiamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="Y">Lotus japonicus</Keyword>
<Keyword MajorTopicYN="Y">root nodule symbiosis</Keyword>
<Keyword MajorTopicYN="Y">thiamine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27977319</ArticleId>
<ArticleId IdType="doi">10.1080/15592324.2016.1265723</ArticleId>
<ArticleId IdType="pmc">PMC5225936</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2014 Feb 19;62(7):1543-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24450764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(2):351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Oct;71(14-15):1615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):2033-2043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2009;78:569-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27977319
   |texte=   The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:27977319" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020