Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).

Identifieur interne : 000E09 ( Main/Corpus ); précédent : 000E08; suivant : 000E10

Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).

Auteurs : Zhonghua Zhang ; Qiong Wang ; Hua Wang ; Siming Nie ; Zhengwei Liang

Source :

RBID : pubmed:28062103

English descriptors

Abstract

Soil aggregation, an ecosystem function correlated with the concentration of glomalin-related soil protein (GRSP), is highly disturbed in saline soil. However, few studies have focused on differences in amount, composition, and ion binding capacity of GRSP in typical sodic-saline soils. In this study, a field study was performed in Songnen Plain. Combined indicators of soil salinity (Q value) were significant negatively correlated with GRSP concentration by Principal Component Analysis. Multiple linear regression models showed that soil salinity might account for 46%, 25% and 44% variation in total GRSP (T-GRSP), easily-extractable GRSP (EE-GRSP) and difficultly-extractable GRSP (DE-GRSP), respectively. Soil bulk density had most important impact on GRSP concentration, followed by the pH, soil EC had the weak influence. Comparative analysis was carried out between low-salinity and high-salinity soil. Purified T-GRSP of high-saline soil contained higher N content (13.13%), lower C content (43.41%) and lower functional groups relative content (e.g. CO and SiOSi). Purified T-GRSP of high-salinity soil had a greater binding capacity with calcium and phosphorus, the binding capacity could compensate the GRSP loss about 29.8% and 14.1%, respectively. Our findings suggested that sodic salinization of the soil led to a decrease in GRSP concentration and a change in the component percentages. This change in composition might be related to adaptation of fungi-plant systems to varied environments. The calcium and phosphorus binding capacity had a positive dependent of soil salinization, which was possible to develop ecological management or recovery technology in the future.

DOI: 10.1016/j.scitotenv.2016.12.176
PubMed: 28062103

Links to Exploration step

pubmed:28062103

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).</title>
<author>
<name sortKey="Zhang, Zhonghua" sort="Zhang, Zhonghua" uniqKey="Zhang Z" first="Zhonghua" last="Zhang">Zhonghua Zhang</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: en_cn@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qiong" sort="Wang, Qiong" uniqKey="Wang Q" first="Qiong" last="Wang">Qiong Wang</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hua" sort="Wang, Hua" uniqKey="Wang H" first="Hua" last="Wang">Hua Wang</name>
<affiliation>
<nlm:affiliation>Institute of Natural Resources, Heilongjiang Academy of Sciences, Harbin, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Siming" sort="Nie, Siming" uniqKey="Nie S" first="Siming" last="Nie">Siming Nie</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Zhengwei" sort="Liang, Zhengwei" uniqKey="Liang Z" first="Zhengwei" last="Liang">Zhengwei Liang</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: liangzw@iga.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28062103</idno>
<idno type="pmid">28062103</idno>
<idno type="doi">10.1016/j.scitotenv.2016.12.176</idno>
<idno type="wicri:Area/Main/Corpus">000E09</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).</title>
<author>
<name sortKey="Zhang, Zhonghua" sort="Zhang, Zhonghua" uniqKey="Zhang Z" first="Zhonghua" last="Zhang">Zhonghua Zhang</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: en_cn@126.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Qiong" sort="Wang, Qiong" uniqKey="Wang Q" first="Qiong" last="Wang">Qiong Wang</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hua" sort="Wang, Hua" uniqKey="Wang H" first="Hua" last="Wang">Hua Wang</name>
<affiliation>
<nlm:affiliation>Institute of Natural Resources, Heilongjiang Academy of Sciences, Harbin, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nie, Siming" sort="Nie, Siming" uniqKey="Nie S" first="Siming" last="Nie">Siming Nie</name>
<affiliation>
<nlm:affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Zhengwei" sort="Liang, Zhengwei" uniqKey="Liang Z" first="Zhengwei" last="Liang">Zhengwei Liang</name>
<affiliation>
<nlm:affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: liangzw@iga.ac.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Glycoproteins (chemistry)</term>
<term>Salinity (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glycoproteins</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>China</term>
<term>Ecosystem</term>
<term>Salinity</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil aggregation, an ecosystem function correlated with the concentration of glomalin-related soil protein (GRSP), is highly disturbed in saline soil. However, few studies have focused on differences in amount, composition, and ion binding capacity of GRSP in typical sodic-saline soils. In this study, a field study was performed in Songnen Plain. Combined indicators of soil salinity (Q value) were significant negatively correlated with GRSP concentration by Principal Component Analysis. Multiple linear regression models showed that soil salinity might account for 46%, 25% and 44% variation in total GRSP (T-GRSP), easily-extractable GRSP (EE-GRSP) and difficultly-extractable GRSP (DE-GRSP), respectively. Soil bulk density had most important impact on GRSP concentration, followed by the pH, soil EC had the weak influence. Comparative analysis was carried out between low-salinity and high-salinity soil. Purified T-GRSP of high-saline soil contained higher N content (13.13%), lower C content (43.41%) and lower functional groups relative content (e.g. CO and SiOSi). Purified T-GRSP of high-salinity soil had a greater binding capacity with calcium and phosphorus, the binding capacity could compensate the GRSP loss about 29.8% and 14.1%, respectively. Our findings suggested that sodic salinization of the soil led to a decrease in GRSP concentration and a change in the component percentages. This change in composition might be related to adaptation of fungi-plant systems to varied environments. The calcium and phosphorus binding capacity had a positive dependent of soil salinization, which was possible to develop ecological management or recovery technology in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28062103</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>581-582</Volume>
<PubDate>
<Year>2017</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).</ArticleTitle>
<Pagination>
<MedlinePgn>657-665</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(16)32872-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2016.12.176</ELocationID>
<Abstract>
<AbstractText>Soil aggregation, an ecosystem function correlated with the concentration of glomalin-related soil protein (GRSP), is highly disturbed in saline soil. However, few studies have focused on differences in amount, composition, and ion binding capacity of GRSP in typical sodic-saline soils. In this study, a field study was performed in Songnen Plain. Combined indicators of soil salinity (Q value) were significant negatively correlated with GRSP concentration by Principal Component Analysis. Multiple linear regression models showed that soil salinity might account for 46%, 25% and 44% variation in total GRSP (T-GRSP), easily-extractable GRSP (EE-GRSP) and difficultly-extractable GRSP (DE-GRSP), respectively. Soil bulk density had most important impact on GRSP concentration, followed by the pH, soil EC had the weak influence. Comparative analysis was carried out between low-salinity and high-salinity soil. Purified T-GRSP of high-saline soil contained higher N content (13.13%), lower C content (43.41%) and lower functional groups relative content (e.g. CO and SiOSi). Purified T-GRSP of high-salinity soil had a greater binding capacity with calcium and phosphorus, the binding capacity could compensate the GRSP loss about 29.8% and 14.1%, respectively. Our findings suggested that sodic salinization of the soil led to a decrease in GRSP concentration and a change in the component percentages. This change in composition might be related to adaptation of fungi-plant systems to varied environments. The calcium and phosphorus binding capacity had a positive dependent of soil salinization, which was possible to develop ecological management or recovery technology in the future.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhonghua</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: en_cn@126.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qiong</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Natural Resources, Heilongjiang Academy of Sciences, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Siming</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Zhengwei</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China. Electronic address: liangzw@iga.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C573268">glomalin, Mycorrhizae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="Y">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Compositional traits</Keyword>
<Keyword MajorTopicYN="N">Glomalin-related soil protein</Keyword>
<Keyword MajorTopicYN="N">Ion binding capacity</Keyword>
<Keyword MajorTopicYN="N">Soil salinization and alkalinization</Keyword>
<Keyword MajorTopicYN="N">Standing concentration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28062103</ArticleId>
<ArticleId IdType="pii">S0048-9697(16)32872-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2016.12.176</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28062103
   |texte=   Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28062103" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020