Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Symbiont abundance can affect host plant population dynamics.

Identifieur interne : 000E08 ( Main/Corpus ); précédent : 000E07; suivant : 000E09

Symbiont abundance can affect host plant population dynamics.

Auteurs : Rachel Rock-Blake ; Melissa K. Mccormick ; Hope E A. Brooks ; Cynthia S. Jones ; Dennis F. Whigham

Source :

RBID : pubmed:28062407

English descriptors

Abstract

PREMISE OF THE STUDY

Symbioses are almost universal, but little is known about how symbiont abundance can affect host performance. Many orchids undergo vegetative dormancy and frequent and protracted dormancy have been associated with population declines. If mycorrhizal fungi affect host plant performance, those effects are likely to alter patterns of vegetative dormancy. The goal of this study was to determine whether the abundance of mycorrhizal fungi is related to the likelihood of entering dormancy and whether fungal abundance varied with dormancy duration in the federally listed threatened orchid Isotria medeoloides.

METHODS

We studied three populations of the threatened North American terrestrial orchid Isotria medeoloides using long-term emergence data and evaluated the relationship between the abundance of associated mycorrhizal fungi (Russulaceae) and orchid dormancy and emergence. Mycorrhizal fungi in soil adjacent to orchids were quantified in two ways. First, ectomycorrhizal (ECM) fungi on adjacent root tips were identified using DNA sequencing to determine their phylogenetic relationship to fungi that are known to form mycorrhizae with I. medeoloides. Second, we extracted DNA from soil samples and used quantitative real-time PCR to estimate the abundance of Russulaceae hyphae adjacent to each orchid.

KEY RESULTS

We found that the abundance of Russulaceae, both in the soil and on nearby ECM root tips, was significantly related to orchid prior emergence. Both abundance and prior emergence history were predictive of future emergence.

CONCLUSIONS

These results suggest that the abundance of mycorrhizal fungi can influence orchid population dynamics and is an essential component of orchid conservation.


DOI: 10.3732/ajb.1600334
PubMed: 28062407

Links to Exploration step

pubmed:28062407

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Symbiont abundance can affect host plant population dynamics.</title>
<author>
<name sortKey="Rock Blake, Rachel" sort="Rock Blake, Rachel" uniqKey="Rock Blake R" first="Rachel" last="Rock-Blake">Rachel Rock-Blake</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Melissa K" sort="Mccormick, Melissa K" uniqKey="Mccormick M" first="Melissa K" last="Mccormick">Melissa K. Mccormick</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA mccormickm@si.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brooks, Hope E A" sort="Brooks, Hope E A" uniqKey="Brooks H" first="Hope E A" last="Brooks">Hope E A. Brooks</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Cynthia S" sort="Jones, Cynthia S" uniqKey="Jones C" first="Cynthia S" last="Jones">Cynthia S. Jones</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whigham, Dennis F" sort="Whigham, Dennis F" uniqKey="Whigham D" first="Dennis F" last="Whigham">Dennis F. Whigham</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28062407</idno>
<idno type="pmid">28062407</idno>
<idno type="doi">10.3732/ajb.1600334</idno>
<idno type="wicri:Area/Main/Corpus">000E08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Symbiont abundance can affect host plant population dynamics.</title>
<author>
<name sortKey="Rock Blake, Rachel" sort="Rock Blake, Rachel" uniqKey="Rock Blake R" first="Rachel" last="Rock-Blake">Rachel Rock-Blake</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Melissa K" sort="Mccormick, Melissa K" uniqKey="Mccormick M" first="Melissa K" last="Mccormick">Melissa K. Mccormick</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA mccormickm@si.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brooks, Hope E A" sort="Brooks, Hope E A" uniqKey="Brooks H" first="Hope E A" last="Brooks">Hope E A. Brooks</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jones, Cynthia S" sort="Jones, Cynthia S" uniqKey="Jones C" first="Cynthia S" last="Jones">Cynthia S. Jones</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whigham, Dennis F" sort="Whigham, Dennis F" uniqKey="Whigham D" first="Dennis F" last="Whigham">Dennis F. Whigham</name>
<affiliation>
<nlm:affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of botany</title>
<idno type="eISSN">1537-2197</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (physiology)</term>
<term>DNA, Fungal (chemistry)</term>
<term>DNA, Fungal (genetics)</term>
<term>Hyphae (genetics)</term>
<term>Hyphae (physiology)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Orchidaceae (microbiology)</term>
<term>Orchidaceae (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Dormancy (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>DNA, Fungal</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Orchidaceae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
<term>Orchidaceae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phylogeny</term>
<term>Plant Dormancy</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>PREMISE OF THE STUDY</b>
</p>
<p>Symbioses are almost universal, but little is known about how symbiont abundance can affect host performance. Many orchids undergo vegetative dormancy and frequent and protracted dormancy have been associated with population declines. If mycorrhizal fungi affect host plant performance, those effects are likely to alter patterns of vegetative dormancy. The goal of this study was to determine whether the abundance of mycorrhizal fungi is related to the likelihood of entering dormancy and whether fungal abundance varied with dormancy duration in the federally listed threatened orchid Isotria medeoloides.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We studied three populations of the threatened North American terrestrial orchid Isotria medeoloides using long-term emergence data and evaluated the relationship between the abundance of associated mycorrhizal fungi (Russulaceae) and orchid dormancy and emergence. Mycorrhizal fungi in soil adjacent to orchids were quantified in two ways. First, ectomycorrhizal (ECM) fungi on adjacent root tips were identified using DNA sequencing to determine their phylogenetic relationship to fungi that are known to form mycorrhizae with I. medeoloides. Second, we extracted DNA from soil samples and used quantitative real-time PCR to estimate the abundance of Russulaceae hyphae adjacent to each orchid.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>We found that the abundance of Russulaceae, both in the soil and on nearby ECM root tips, was significantly related to orchid prior emergence. Both abundance and prior emergence history were predictive of future emergence.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results suggest that the abundance of mycorrhizal fungi can influence orchid population dynamics and is an essential component of orchid conservation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28062407</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-2197</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>American journal of botany</Title>
<ISOAbbreviation>Am J Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Symbiont abundance can affect host plant population dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>72-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3732/ajb.1600334</ELocationID>
<Abstract>
<AbstractText Label="PREMISE OF THE STUDY" NlmCategory="OBJECTIVE">Symbioses are almost universal, but little is known about how symbiont abundance can affect host performance. Many orchids undergo vegetative dormancy and frequent and protracted dormancy have been associated with population declines. If mycorrhizal fungi affect host plant performance, those effects are likely to alter patterns of vegetative dormancy. The goal of this study was to determine whether the abundance of mycorrhizal fungi is related to the likelihood of entering dormancy and whether fungal abundance varied with dormancy duration in the federally listed threatened orchid Isotria medeoloides.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We studied three populations of the threatened North American terrestrial orchid Isotria medeoloides using long-term emergence data and evaluated the relationship between the abundance of associated mycorrhizal fungi (Russulaceae) and orchid dormancy and emergence. Mycorrhizal fungi in soil adjacent to orchids were quantified in two ways. First, ectomycorrhizal (ECM) fungi on adjacent root tips were identified using DNA sequencing to determine their phylogenetic relationship to fungi that are known to form mycorrhizae with I. medeoloides. Second, we extracted DNA from soil samples and used quantitative real-time PCR to estimate the abundance of Russulaceae hyphae adjacent to each orchid.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">We found that the abundance of Russulaceae, both in the soil and on nearby ECM root tips, was significantly related to orchid prior emergence. Both abundance and prior emergence history were predictive of future emergence.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results suggest that the abundance of mycorrhizal fungi can influence orchid population dynamics and is an essential component of orchid conservation.</AbstractText>
<CopyrightInformation>© 2017 Botanical Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rock-Blake</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Melissa K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA mccormickm@si.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brooks</LastName>
<ForeName>Hope E A</ForeName>
<Initials>HE</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Cynthia S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whigham</LastName>
<ForeName>Dennis F</ForeName>
<Initials>DF</Initials>
<AffiliationInfo>
<Affiliation>Smithsonian Environmental Research Center, P. O. Box 28, Edgewater, Maryland 21037 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Bot</MedlineTA>
<NlmUniqueID>0370467</NlmUniqueID>
<ISSNLinking>0002-9122</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057445" MajorTopicYN="N">Plant Dormancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Isotria medeoloides</Keyword>
<Keyword MajorTopicYN="N">Orchidaceae</Keyword>
<Keyword MajorTopicYN="N">Russula</Keyword>
<Keyword MajorTopicYN="N">dormancy</Keyword>
<Keyword MajorTopicYN="N">mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">orchid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28062407</ArticleId>
<ArticleId IdType="pii">ajb.1600334</ArticleId>
<ArticleId IdType="doi">10.3732/ajb.1600334</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28062407
   |texte=   Symbiont abundance can affect host plant population dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28062407" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020