Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymorphic responses of Medicago truncatula accessions to potassium deprivation.

Identifieur interne : 000D30 ( Main/Corpus ); précédent : 000D29; suivant : 000D31

Polymorphic responses of Medicago truncatula accessions to potassium deprivation.

Auteurs : Kevin Garcia ; Jean-Michel Ané

Source :

RBID : pubmed:28340327

English descriptors

Abstract

Potassium (K+) is an essential macronutrient for plants and the most abundant cation in cells. Due to variable K+ availability in the environment, plants must be able to adjust their developmental, physiological and transcriptional responses. The plant development to K+ deprivation was not well studied in legumes thus far. We recently described the first adaptation mechanisms of the model legume Medicago truncatula Jemalong A17 to long-term K+ deprivation and analyzed these responses in the context of arbuscular mycorrhizal symbiosis. Here we report polymorphic growth variations of two genetically very different accessions of M. truncatula to K+-limiting conditions, Jemalong A17, and the Tunisian accession Tn11.1. The faster adaptation of Tn11.1 than A17 to K+ shortage might be due to its greater adaptation to saline soils. Examining in a more systematic way the developmental adaptation of various M. truncatula accessions to K+ deprivation will provide a better understanding of how legume evolved to cope with this stressful condition.

DOI: 10.1080/15592324.2017.1307494
PubMed: 28340327
PubMed Central: PMC5437819

Links to Exploration step

pubmed:28340327

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymorphic responses of Medicago truncatula accessions to potassium deprivation.</title>
<author>
<name sortKey="Garcia, Kevin" sort="Garcia, Kevin" uniqKey="Garcia K" first="Kevin" last="Garcia">Kevin Garcia</name>
<affiliation>
<nlm:affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
<affiliation>
<nlm:affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>b Department of Agronomy , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28340327</idno>
<idno type="pmid">28340327</idno>
<idno type="doi">10.1080/15592324.2017.1307494</idno>
<idno type="pmc">PMC5437819</idno>
<idno type="wicri:Area/Main/Corpus">000D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polymorphic responses of Medicago truncatula accessions to potassium deprivation.</title>
<author>
<name sortKey="Garcia, Kevin" sort="Garcia, Kevin" uniqKey="Garcia K" first="Kevin" last="Garcia">Kevin Garcia</name>
<affiliation>
<nlm:affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
<affiliation>
<nlm:affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>b Department of Agronomy , University of Wisconsin-Madison , Madison , WI , USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (genetics)</term>
<term>Fabaceae (metabolism)</term>
<term>Fabaceae (microbiology)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Potassium (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Potassium</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
<term>Gene Expression Regulation, Plant</term>
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fabaceae</term>
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Potassium (K
<sup>+</sup>
) is an essential macronutrient for plants and the most abundant cation in cells. Due to variable K
<sup>+</sup>
availability in the environment, plants must be able to adjust their developmental, physiological and transcriptional responses. The plant development to K
<sup>+</sup>
deprivation was not well studied in legumes thus far. We recently described the first adaptation mechanisms of the model legume Medicago truncatula Jemalong A17 to long-term K
<sup>+</sup>
deprivation and analyzed these responses in the context of arbuscular mycorrhizal symbiosis. Here we report polymorphic growth variations of two genetically very different accessions of M. truncatula to K
<sup>+</sup>
-limiting conditions, Jemalong A17, and the Tunisian accession Tn11.1. The faster adaptation of Tn11.1 than A17 to K
<sup>+</sup>
shortage might be due to its greater adaptation to saline soils. Examining in a more systematic way the developmental adaptation of various M. truncatula accessions to K
<sup>+</sup>
deprivation will provide a better understanding of how legume evolved to cope with this stressful condition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28340327</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Polymorphic responses of Medicago truncatula accessions to potassium deprivation.</ArticleTitle>
<Pagination>
<MedlinePgn>e1307494</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15592324.2017.1307494</ELocationID>
<Abstract>
<AbstractText>Potassium (K
<sup>+</sup>
) is an essential macronutrient for plants and the most abundant cation in cells. Due to variable K
<sup>+</sup>
availability in the environment, plants must be able to adjust their developmental, physiological and transcriptional responses. The plant development to K
<sup>+</sup>
deprivation was not well studied in legumes thus far. We recently described the first adaptation mechanisms of the model legume Medicago truncatula Jemalong A17 to long-term K
<sup>+</sup>
deprivation and analyzed these responses in the context of arbuscular mycorrhizal symbiosis. Here we report polymorphic growth variations of two genetically very different accessions of M. truncatula to K
<sup>+</sup>
-limiting conditions, Jemalong A17, and the Tunisian accession Tn11.1. The faster adaptation of Tn11.1 than A17 to K
<sup>+</sup>
shortage might be due to its greater adaptation to saline soils. Examining in a more systematic way the developmental adaptation of various M. truncatula accessions to K
<sup>+</sup>
deprivation will provide a better understanding of how legume evolved to cope with this stressful condition.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ané</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>a Department of Bacteriology , University of Wisconsin-Madison , Madison , WI , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Department of Agronomy , University of Wisconsin-Madison , Madison , WI , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Development</Keyword>
<Keyword MajorTopicYN="Y">Medicago truncatula</Keyword>
<Keyword MajorTopicYN="Y">legumes</Keyword>
<Keyword MajorTopicYN="Y">potassium</Keyword>
<Keyword MajorTopicYN="Y">reactive oxygen species</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28340327</ArticleId>
<ArticleId IdType="doi">10.1080/15592324.2017.1307494</ArticleId>
<ArticleId IdType="pmc">PMC5437819</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2011 Sep;52(9):1603-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 17;5:337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25101097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:451-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23330792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 27;7:912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2014 Aug;37(8):575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24938230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 May 15;171(9):656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24140002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Mar;173(3):1811-1823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28159827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 16;5:467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25278946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 May 15;171(9):723-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 22;15:1160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:47-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 May 15;171(9):670-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24635902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2556-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28340327
   |texte=   Polymorphic responses of Medicago truncatula accessions to potassium deprivation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:28340327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020