Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.

Identifieur interne : 000A55 ( Main/Corpus ); précédent : 000A54; suivant : 000A56

Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.

Auteurs : Kate Storer ; Aisha Coggan ; Phil Ineson ; Angela Hodge

Source :

RBID : pubmed:29206293

English descriptors

Abstract

Nitrous oxide (N2 O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N2 O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N2 O production was measured both before and after addition of ammonium and nitrate. In both experiments, N2 O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N2 O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N2 O was produced following nitrate application to either AMF treatment. Thus, the main N2 O source in this system appeared to be via nitrification, and the production of N2 O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N2 O production.

DOI: 10.1111/nph.14931
PubMed: 29206293
PubMed Central: PMC6282961

Links to Exploration step

pubmed:29206293

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N
<sub>2</sub>
O hotspots.</title>
<author>
<name sortKey="Storer, Kate" sort="Storer, Kate" uniqKey="Storer K" first="Kate" last="Storer">Kate Storer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coggan, Aisha" sort="Coggan, Aisha" uniqKey="Coggan A" first="Aisha" last="Coggan">Aisha Coggan</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ineson, Phil" sort="Ineson, Phil" uniqKey="Ineson P" first="Phil" last="Ineson">Phil Ineson</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hodge, Angela" sort="Hodge, Angela" uniqKey="Hodge A" first="Angela" last="Hodge">Angela Hodge</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29206293</idno>
<idno type="pmid">29206293</idno>
<idno type="doi">10.1111/nph.14931</idno>
<idno type="pmc">PMC6282961</idno>
<idno type="wicri:Area/Main/Corpus">000A55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N
<sub>2</sub>
O hotspots.</title>
<author>
<name sortKey="Storer, Kate" sort="Storer, Kate" uniqKey="Storer K" first="Kate" last="Storer">Kate Storer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coggan, Aisha" sort="Coggan, Aisha" uniqKey="Coggan A" first="Aisha" last="Coggan">Aisha Coggan</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ineson, Phil" sort="Ineson, Phil" uniqKey="Ineson P" first="Phil" last="Ineson">Phil Ineson</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hodge, Angela" sort="Hodge, Angela" uniqKey="Hodge A" first="Angela" last="Hodge">Angela Hodge</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Hyphae (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrous Oxide (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
<term>Nitrous Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrous oxide (N
<sub>2</sub>
O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N
<sub>2</sub>
O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N
<sub>2</sub>
O production was measured both before and after addition of ammonium and nitrate. In both experiments, N
<sub>2</sub>
O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N
<sub>2</sub>
O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N
<sub>2</sub>
O was produced following nitrate application to either AMF treatment. Thus, the main N
<sub>2</sub>
O source in this system appeared to be via nitrification, and the production of N
<sub>2</sub>
O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N
<sub>2</sub>
O production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29206293</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>220</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N
<sub>2</sub>
O hotspots.</ArticleTitle>
<Pagination>
<MedlinePgn>1285-1295</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.14931</ELocationID>
<Abstract>
<AbstractText>Nitrous oxide (N
<sub>2</sub>
O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N
<sub>2</sub>
O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N
<sub>2</sub>
O production was measured both before and after addition of ammonium and nitrate. In both experiments, N
<sub>2</sub>
O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N
<sub>2</sub>
O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N
<sub>2</sub>
O was produced following nitrate application to either AMF treatment. Thus, the main N
<sub>2</sub>
O source in this system appeared to be via nitrification, and the production of N
<sub>2</sub>
O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N
<sub>2</sub>
O production.</AbstractText>
<CopyrightInformation>© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Storer</LastName>
<ForeName>Kate</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0001-7244-7555</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coggan</LastName>
<ForeName>Aisha</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ineson</LastName>
<ForeName>Phil</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hodge</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/GO16801/1)</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council, UK</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>British Mycological Society</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K50XQU1029</RegistryNumber>
<NameOfSubstance UI="D009609">Nitrous Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009609" MajorTopicYN="N">Nitrous Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">N cycle</Keyword>
<Keyword MajorTopicYN="Y">agriculture</Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal fungi (AMF)</Keyword>
<Keyword MajorTopicYN="Y">greenhouse gas</Keyword>
<Keyword MajorTopicYN="Y">hyphosphere</Keyword>
<Keyword MajorTopicYN="Y">nitrification</Keyword>
<Keyword MajorTopicYN="Y">nitrogen (N)</Keyword>
<Keyword MajorTopicYN="Y">nitrous oxide (N2O)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29206293</ArticleId>
<ArticleId IdType="doi">10.1111/nph.14931</ArticleId>
<ArticleId IdType="pmc">PMC6282961</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1084-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2014;89:47-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25131400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 24;528(7583):504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26610024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2008 Jun;22(11):1664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Nov;8(11):779-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 17;330(6011):1666-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Jun;65(6):2679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10347060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 May 31;83(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28389533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 May 5;367(1593):1157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22451101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Nov;20(11):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22959489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 1996 Jun;133(2):273-280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29681069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Jun;8(6):1336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24351937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2007 Aug;61(2):295-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 May;20(5):283-290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25840500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Jan;24(1):360-370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28752605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Oct;68(10):4751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 May;8(5):1115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 24;528(7583):555-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26610025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Apr;80(1):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;496:139-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21514463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Jun;15(6):1870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23360621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Feb;7(2):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000A55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29206293
   |texte=   Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2 O hotspots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29206293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020