Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.

Identifieur interne : 000904 ( Main/Corpus ); précédent : 000903; suivant : 000905

Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.

Auteurs : Gijsbert D A. Werner ; Johannes H C. Cornelissen ; William K. Cornwell ; Nadejda A. Soudzilovskaia ; Jens Kattge ; Stuart A. West ; E Toby Kiers

Source :

RBID : pubmed:29712857

English descriptors

Abstract

Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify ∼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (i) partner with other root symbionts or (ii) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.

DOI: 10.1073/pnas.1721629115
PubMed: 29712857
PubMed Central: PMC5960305

Links to Exploration step

pubmed:29712857

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.</title>
<author>
<name sortKey="Werner, Gijsbert D A" sort="Werner, Gijsbert D A" uniqKey="Werner G" first="Gijsbert D A" last="Werner">Gijsbert D A. Werner</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS; gijsbert.werner@zoo.ox.ac.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Balliol College, University of Oxford, Oxford, United Kingdom OX1 3BJ.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornelissen, Johannes H C" sort="Cornelissen, Johannes H C" uniqKey="Cornelissen J" first="Johannes H C" last="Cornelissen">Johannes H C. Cornelissen</name>
<affiliation>
<nlm:affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornwell, William K" sort="Cornwell, William K" uniqKey="Cornwell W" first="William K" last="Cornwell">William K. Cornwell</name>
<affiliation>
<nlm:affiliation>School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soudzilovskaia, Nadejda A" sort="Soudzilovskaia, Nadejda A" uniqKey="Soudzilovskaia N" first="Nadejda A" last="Soudzilovskaia">Nadejda A. Soudzilovskaia</name>
<affiliation>
<nlm:affiliation>Conservation Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kattge, Jens" sort="Kattge, Jens" uniqKey="Kattge J" first="Jens" last="Kattge">Jens Kattge</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="West, Stuart A" sort="West, Stuart A" uniqKey="West S" first="Stuart A" last="West">Stuart A. West</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29712857</idno>
<idno type="pmid">29712857</idno>
<idno type="doi">10.1073/pnas.1721629115</idno>
<idno type="pmc">PMC5960305</idno>
<idno type="wicri:Area/Main/Corpus">000904</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000904</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.</title>
<author>
<name sortKey="Werner, Gijsbert D A" sort="Werner, Gijsbert D A" uniqKey="Werner G" first="Gijsbert D A" last="Werner">Gijsbert D A. Werner</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS; gijsbert.werner@zoo.ox.ac.uk.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Balliol College, University of Oxford, Oxford, United Kingdom OX1 3BJ.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornelissen, Johannes H C" sort="Cornelissen, Johannes H C" uniqKey="Cornelissen J" first="Johannes H C" last="Cornelissen">Johannes H C. Cornelissen</name>
<affiliation>
<nlm:affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornwell, William K" sort="Cornwell, William K" uniqKey="Cornwell W" first="William K" last="Cornwell">William K. Cornwell</name>
<affiliation>
<nlm:affiliation>School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soudzilovskaia, Nadejda A" sort="Soudzilovskaia, Nadejda A" uniqKey="Soudzilovskaia N" first="Nadejda A" last="Soudzilovskaia">Nadejda A. Soudzilovskaia</name>
<affiliation>
<nlm:affiliation>Conservation Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kattge, Jens" sort="Kattge, Jens" uniqKey="Kattge J" first="Jens" last="Kattge">Jens Kattge</name>
<affiliation>
<nlm:affiliation>Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="West, Stuart A" sort="West, Stuart A" uniqKey="West S" first="Stuart A" last="West">Stuart A. West</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
<affiliation>
<nlm:affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Evolution (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Feedback, Physiological (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plants (microbiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Environment</term>
<term>Feedback, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify ∼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (
<i>i</i>
) partner with other root symbionts or (
<i>ii</i>
) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29712857</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.</ArticleTitle>
<Pagination>
<MedlinePgn>5229-5234</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1721629115</ELocationID>
<Abstract>
<AbstractText>Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify ∼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (
<i>i</i>
) partner with other root symbionts or (
<i>ii</i>
) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Werner</LastName>
<ForeName>Gijsbert D A</ForeName>
<Initials>GDA</Initials>
<Identifier Source="ORCID">0000-0002-5426-2562</Identifier>
<AffiliationInfo>
<Affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS; gijsbert.werner@zoo.ox.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Balliol College, University of Oxford, Oxford, United Kingdom OX1 3BJ.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cornelissen</LastName>
<ForeName>Johannes H C</ForeName>
<Initials>JHC</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cornwell</LastName>
<ForeName>William K</ForeName>
<Initials>WK</Initials>
<AffiliationInfo>
<Affiliation>School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soudzilovskaia</LastName>
<ForeName>Nadejda A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>Conservation Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kattge</LastName>
<ForeName>Jens</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>West</LastName>
<ForeName>Stuart A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, University of Oxford, Oxford, United Kingdom OX1 3PS.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kiers</LastName>
<ForeName>E Toby</ForeName>
<Initials>ET</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>335542</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="N">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">cooperation</Keyword>
<Keyword MajorTopicYN="Y">macroevolution</Keyword>
<Keyword MajorTopicYN="Y">mutualism</Keyword>
<Keyword MajorTopicYN="Y">mycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29712857</ArticleId>
<ArticleId IdType="pii">1721629115</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1721629115</ArticleId>
<ArticleId IdType="pmc">PMC5960305</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan 22;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29355963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Nov 27;281(1775):20132146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24285193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10262-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 21;411(6840):937-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 4;425(6953):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Apr;7(4):162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Oct 1;42(1):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 Dec;23(12):2507-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20942825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Aug 21;17(16):R661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jul 17;10(7):e1004487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25032823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Sep 30;5(5):e01697-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Feb;68(2):318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24131102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Oct;156(S4):S62-S76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29592582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2010;55:247-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19728837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Feb 03;1:15009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 Mar;12 (3):921-930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29379177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 10;5:4087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24912610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Dec;14 (12 ):760-773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Oct;21(10):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2017 Jun;111:196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28408324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25349406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Feb 6;506(7486):89-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Sep;17(9):1086-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24912000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 Apr;95(4):1045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 May;95(5):1384-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25000769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jan 18;2:15208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Dec;14 (12 ):731-743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jul 08;5(7):e11490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2004 Jun;79(2):135-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 17;299(5605):386-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Dec;13(12):1459-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Oct 10;502(7470):224-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24037375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2010 May;23 (5):1075-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2016 Nov;188(5):E113-E125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27788343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2013 Sep;62(5):725-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23676760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2015 Dec;11(12 ):20150840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jul 04;8:15973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28675159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3951-3956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28341706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Mar;11(3):715-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27983719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Feb 8;284(1848):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28148744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2015 Mar;69(3):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25565449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 7;447(7145):706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1406-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Jan 28;6(5):1317-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27087920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Sep;17(9):1121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000904 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000904 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29712857
   |texte=   Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29712857" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020