Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.

Identifieur interne : 000589 ( Main/Corpus ); précédent : 000588; suivant : 000590

Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.

Auteurs : Neera Garg ; Lakita Kashyap

Source :

RBID : pubmed:30680683

English descriptors

Abstract

Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.

DOI: 10.1007/s11356-019-04256-5
PubMed: 30680683

Links to Exploration step

pubmed:30680683

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.</title>
<author>
<name sortKey="Garg, Neera" sort="Garg, Neera" uniqKey="Garg N" first="Neera" last="Garg">Neera Garg</name>
<affiliation>
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kashyap, Lakita" sort="Kashyap, Lakita" uniqKey="Kashyap L" first="Lakita" last="Kashyap">Lakita Kashyap</name>
<affiliation>
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30680683</idno>
<idno type="pmid">30680683</idno>
<idno type="doi">10.1007/s11356-019-04256-5</idno>
<idno type="wicri:Area/Main/Corpus">000589</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000589</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.</title>
<author>
<name sortKey="Garg, Neera" sort="Garg, Neera" uniqKey="Garg N" first="Neera" last="Garg">Neera Garg</name>
<affiliation>
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kashyap, Lakita" sort="Kashyap, Lakita" uniqKey="Kashyap L" first="Lakita" last="Kashyap">Lakita Kashyap</name>
<affiliation>
<nlm:affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Arsenates (MeSH)</term>
<term>Arsenic (toxicity)</term>
<term>Arsenites (MeSH)</term>
<term>Ascorbic Acid (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Cajanus (physiology)</term>
<term>Genotype (MeSH)</term>
<term>Glomeromycota (MeSH)</term>
<term>Glutathione (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Silicon (metabolism)</term>
<term>Soil Pollutants (toxicity)</term>
<term>Symbiosis (MeSH)</term>
<term>Vanadium (toxicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Silicon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Arsenic</term>
<term>Soil Pollutants</term>
<term>Vanadium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arsenates</term>
<term>Arsenites</term>
<term>Ascorbic Acid</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cajanus</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Genotype</term>
<term>Glomeromycota</term>
<term>Plant Development</term>
<term>Plant Roots</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">30680683</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.</ArticleTitle>
<Pagination>
<MedlinePgn>7821-7839</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-019-04256-5</ELocationID>
<Abstract>
<AbstractText>Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garg</LastName>
<ForeName>Neera</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India. gargneera@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kashyap</LastName>
<ForeName>Lakita</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, Panjab University, Chandigarh, 160014, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>UGC-No.f.25-1/2013-14(BSR)/7-151/2007(BSR)</GrantID>
<Agency>University Grants Commission (IN)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>DBT- BT/PR9466/AGR/21/231/2007</GrantID>
<Agency>Department of Biotechnology , Ministry of Science and Technology (IN)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018053">Arsenites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00J9J9XKDE</RegistryNumber>
<NameOfSubstance UI="D014639">Vanadium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5509X556J</RegistryNumber>
<NameOfSubstance UI="C015001">arsenite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance UI="D012825">Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018053" MajorTopicYN="N">Arsenites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036561" MajorTopicYN="N">Cajanus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012825" MajorTopicYN="N">Silicon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014639" MajorTopicYN="N">Vanadium</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Arsenate</Keyword>
<Keyword MajorTopicYN="N">Arsenite</Keyword>
<Keyword MajorTopicYN="N">Ascorbate-glutathione pool</Keyword>
<Keyword MajorTopicYN="N">Oxidative burden</Keyword>
<Keyword MajorTopicYN="N">Silicon</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30680683</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-019-04256-5</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-019-04256-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Dec;175(2):408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3239770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Earth Planet Sci. 2014 May 1;42:443-467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26778863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2018 Oct;241:900-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29920468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Jun;56(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20379721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Jul;66(13):1551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2013 Oct 9;113(10):7769-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23808632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2015 Jul;21(3):453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26261411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20499112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jan;19(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24381439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Dec;115(12):1197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22115439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2015 Jan;21(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:535-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2013 Nov 15;262:1123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22917495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 08;8:906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28642762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2007 Apr;25(4):158-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17306392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Jun 06;3:182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2017 Mar 4;19(3):246-253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27434775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 20;8:1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28676805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Jul 1;59(7):1317-1325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Environ Contam Toxicol. 2012;215:1-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 May 13;57(9):3695-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19296577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi J Biol Sci. 2016 Mar;23(2):272-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26981010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2017 Apr;23(2):249-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28461715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 May 1;622-623:517-525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29220775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Dec;101(23):8960-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2009 May;72(4):1102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2016 Nov;133:47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Apr;56(7):685-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11314953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2015;2015:756120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Apr;125(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5655425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Radiat Isot. 2001 May;54(5):737-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11258520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Jan 5;160(2):291-299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 12;7:463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2017 Aug;24(22):18520-18535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28646312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Jul;68:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23608626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):461-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 Apr;25(3):165-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25155616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2009 Feb;72(2):626-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2014 May-Jun;118(5-6):444-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(3):3145-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1431-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2011 Apr;17(2):145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23573004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Nov;162(11):1220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Prev Med Public Health. 2014 Sep;47(5):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Apr;74(4):846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18626020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2006 May;141(1):22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16198465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 Jan;44(1):25-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545573</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000589 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000589 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30680683
   |texte=   Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30680683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020