Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses.

Identifieur interne : 000533 ( Main/Corpus ); précédent : 000532; suivant : 000534

Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses.

Auteurs : Irina V. Leppyanen ; Anna N. Kirienko ; Elena A. Dolgikh

Source :

RBID : pubmed:30863680

Abstract

In this study, we demonstrated the successful transformation of two pea (Pisum sativum L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with A. rhizogenes, approximately 70%-80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by Rhizobium leguminosarum bv. viciae and infected by the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient A. rhizogenes-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.

DOI: 10.7717/peerj.6552
PubMed: 30863680
PubMed Central: PMC6408910

Links to Exploration step

pubmed:30863680

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>Agrobacterium rhizogenes</i>
-mediated transformation of
<i>Pisum sativum</i>
L. roots as a tool for studying the mycorrhizal and root nodule symbioses.</title>
<author>
<name sortKey="Leppyanen, Irina V" sort="Leppyanen, Irina V" uniqKey="Leppyanen I" first="Irina V" last="Leppyanen">Irina V. Leppyanen</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirienko, Anna N" sort="Kirienko, Anna N" uniqKey="Kirienko A" first="Anna N" last="Kirienko">Anna N. Kirienko</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolgikh, Elena A" sort="Dolgikh, Elena A" uniqKey="Dolgikh E" first="Elena A" last="Dolgikh">Elena A. Dolgikh</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30863680</idno>
<idno type="pmid">30863680</idno>
<idno type="doi">10.7717/peerj.6552</idno>
<idno type="pmc">PMC6408910</idno>
<idno type="wicri:Area/Main/Corpus">000533</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000533</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>Agrobacterium rhizogenes</i>
-mediated transformation of
<i>Pisum sativum</i>
L. roots as a tool for studying the mycorrhizal and root nodule symbioses.</title>
<author>
<name sortKey="Leppyanen, Irina V" sort="Leppyanen, Irina V" uniqKey="Leppyanen I" first="Irina V" last="Leppyanen">Irina V. Leppyanen</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirienko, Anna N" sort="Kirienko, Anna N" uniqKey="Kirienko A" first="Anna N" last="Kirienko">Anna N. Kirienko</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolgikh, Elena A" sort="Dolgikh, Elena A" uniqKey="Dolgikh E" first="Elena A" last="Dolgikh">Elena A. Dolgikh</name>
<affiliation>
<nlm:affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, we demonstrated the successful transformation of two pea (
<i>Pisum sativum</i>
L.) cultivars using
<i>Agrobacterium rhizogenes</i>
, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with
<i>A. rhizogenes</i>
, approximately 70%-80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by
<i>Rhizobium leguminosarum</i>
bv.
<i>viciae</i>
and infected by the arbuscular mycorrhizal (AM) fungus
<i>Rhizophagus irregularis</i>
. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient
<i>A. rhizogenes</i>
-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30863680</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>Agrobacterium rhizogenes</i>
-mediated transformation of
<i>Pisum sativum</i>
L. roots as a tool for studying the mycorrhizal and root nodule symbioses.</ArticleTitle>
<Pagination>
<MedlinePgn>e6552</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.6552</ELocationID>
<Abstract>
<AbstractText>In this study, we demonstrated the successful transformation of two pea (
<i>Pisum sativum</i>
L.) cultivars using
<i>Agrobacterium rhizogenes</i>
, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with
<i>A. rhizogenes</i>
, approximately 70%-80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by
<i>Rhizobium leguminosarum</i>
bv.
<i>viciae</i>
and infected by the arbuscular mycorrhizal (AM) fungus
<i>Rhizophagus irregularis</i>
. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient
<i>A. rhizogenes</i>
-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leppyanen</LastName>
<ForeName>Irina V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirienko</LastName>
<ForeName>Anna N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dolgikh</LastName>
<ForeName>Elena A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agrobacterium rhizogenes</Keyword>
<Keyword MajorTopicYN="N">Composite plants</Keyword>
<Keyword MajorTopicYN="N">Mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">Nodulation</Keyword>
<Keyword MajorTopicYN="N">Pea transformation</Keyword>
</KeywordList>
<CoiStatement>The authors declare there are no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30863680</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.6552</ArticleId>
<ArticleId IdType="pii">6552</ArticleId>
<ArticleId IdType="pmc">PMC6408910</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Nov 11;402(6758):191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Mar;13(3):268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10707352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2000 Apr 25;153(2):161-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10717322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Sep;13(9):922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10975649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Mar;101(3):751-757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Nov;15(11):1108-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Jun;104(8):1312-1316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Oct;16(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Genet. 2005;46(2):139-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15876681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Apr;19(4):373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16610740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prikl Biokhim Mikrobiol. 2007 May-Jun;43(3):265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17619572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011 Dec 15;7:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22172023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Mar;158(3):1329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22232385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;953:61-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1069:163-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23996315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 Aug;80(2):246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Sep;9(5):276-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1989 May;8(1):12-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2017 Apr 1;24(2):193-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28028038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Dec 21;19(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29267197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1997 May;16(8):513-519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Jan 11;16(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3340542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Apr;3(4):599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Nov;12(11):4125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8223429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30863680
   |texte=   Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30863680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020