Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.

Identifieur interne : 000531 ( Main/Corpus ); précédent : 000530; suivant : 000532

Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.

Auteurs : Tao Wang ; Zhaomo Tian ; Anders Tunlid ; Per Persson

Source :

RBID : pubmed:30877120

English descriptors

Abstract

The interactions between dissolved organic matter (DOM) and mineral particles are critical for the stabilization of soil organic matter (SOM) in terrestrial ecosystems. The processing of DOM by ectomycorrhizal fungi contributes to the formation of mineral-stabilized SOM by two contrasting pathways: the extracellular transformation of DOM (ex vivo pathway) and the secretion of mineral-surface-reactive metabolites (in vivo pathway). In this study, we examined how changes in nitrogen (N) availability affected the formation of mineral-associated carbon (C) from these two pathways. DOM was extracted from forest soils. The processing of this DOM by the ectomycorrhizal fungus Paxillus involutus was examined in laboratory-scale studies with different levels of ammonium. At low levels of ammonium (i.e., under N-limited conditions), the DOM components were slightly oxidized, and fungal C metabolites with iron-reducing activity were secreted. Ammonium amendments decreased the amount of C metabolites, and no additional oxidation of the organic matter was detected. In contrast, the hydrolytic activity and the secretion of N-containing compounds increased, particularly when high levels of ammonium were added. Under these conditions, C, but not N, limited fungal growth. Although the overall production of mineral-associated organic C was not affected by ammonium concentrations, the observed shifts in the activities of the ex vivo and in vivo pathways affected the composition of organic matter adsorbed onto the mineral particles. Such changes will affect the properties of organic matter-mineral associations and, thus, ultimately, the stabilization of SOM.IMPORTANCE Nitrogen (N) availability plays a critical role in the cycling and storage of soil organic matter (SOM). However, large uncertainties remain in predicting the net effect of N addition on soil organic carbon (C) storage due to the complex interactions between organic matter, microbial activity, and mineral particles that determine the formation of stable SOM. Here, we attempted to disentangle the effects of ammonium on these interactions in controlled microcosm experiments including the ectomycorrhizal fungus P.involutus and dissolved organic matter extracted from forest soils. Increased ammonium levels affected the fungal processing of the organic material as well as the secretion of extracellular metabolites. Although ammonium additions did not increase the net production of mineral-adsorbed C, changes in the decomposition and secretion pathways altered the composition of the adsorbed organic matter. These changes may influence the properties of the organic matter-mineral associations and, thus, the stabilization of SOM.

DOI: 10.1128/AEM.03007-18
PubMed: 30877120
PubMed Central: PMC6498167

Links to Exploration step

pubmed:30877120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.</title>
<author>
<name sortKey="Wang, Tao" sort="Wang, Tao" uniqKey="Wang T" first="Tao" last="Wang">Tao Wang</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden tao.wang@biol.lu.se.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tian, Zhaomo" sort="Tian, Zhaomo" uniqKey="Tian Z" first="Zhaomo" last="Tian">Zhaomo Tian</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tunlid, Anders" sort="Tunlid, Anders" uniqKey="Tunlid A" first="Anders" last="Tunlid">Anders Tunlid</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Persson, Per" sort="Persson, Per" uniqKey="Persson P" first="Per" last="Persson">Per Persson</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30877120</idno>
<idno type="pmid">30877120</idno>
<idno type="doi">10.1128/AEM.03007-18</idno>
<idno type="pmc">PMC6498167</idno>
<idno type="wicri:Area/Main/Corpus">000531</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000531</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.</title>
<author>
<name sortKey="Wang, Tao" sort="Wang, Tao" uniqKey="Wang T" first="Tao" last="Wang">Tao Wang</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden tao.wang@biol.lu.se.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tian, Zhaomo" sort="Tian, Zhaomo" uniqKey="Tian Z" first="Zhaomo" last="Tian">Zhaomo Tian</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tunlid, Anders" sort="Tunlid, Anders" uniqKey="Tunlid A" first="Anders" last="Tunlid">Anders Tunlid</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Persson, Per" sort="Persson, Per" uniqKey="Persson P" first="Per" last="Persson">Per Persson</name>
<affiliation>
<nlm:affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agaricales (metabolism)</term>
<term>Ammonium Compounds (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Minerals (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ammonium Compounds</term>
<term>Carbon</term>
<term>Minerals</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agaricales</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The interactions between dissolved organic matter (DOM) and mineral particles are critical for the stabilization of soil organic matter (SOM) in terrestrial ecosystems. The processing of DOM by ectomycorrhizal fungi contributes to the formation of mineral-stabilized SOM by two contrasting pathways: the extracellular transformation of DOM (
<i>ex vivo</i>
pathway) and the secretion of mineral-surface-reactive metabolites (
<i>in vivo</i>
pathway). In this study, we examined how changes in nitrogen (N) availability affected the formation of mineral-associated carbon (C) from these two pathways. DOM was extracted from forest soils. The processing of this DOM by the ectomycorrhizal fungus
<i>Paxillus involutus</i>
was examined in laboratory-scale studies with different levels of ammonium. At low levels of ammonium (i.e., under N-limited conditions), the DOM components were slightly oxidized, and fungal C metabolites with iron-reducing activity were secreted. Ammonium amendments decreased the amount of C metabolites, and no additional oxidation of the organic matter was detected. In contrast, the hydrolytic activity and the secretion of N-containing compounds increased, particularly when high levels of ammonium were added. Under these conditions, C, but not N, limited fungal growth. Although the overall production of mineral-associated organic C was not affected by ammonium concentrations, the observed shifts in the activities of the
<i>ex vivo</i>
and
<i>in vivo</i>
pathways affected the composition of organic matter adsorbed onto the mineral particles. Such changes will affect the properties of organic matter-mineral associations and, thus, ultimately, the stabilization of SOM.
<b>IMPORTANCE</b>
Nitrogen (N) availability plays a critical role in the cycling and storage of soil organic matter (SOM). However, large uncertainties remain in predicting the net effect of N addition on soil organic carbon (C) storage due to the complex interactions between organic matter, microbial activity, and mineral particles that determine the formation of stable SOM. Here, we attempted to disentangle the effects of ammonium on these interactions in controlled microcosm experiments including the ectomycorrhizal fungus
<i>P.</i>
<i>involutus</i>
and dissolved organic matter extracted from forest soils. Increased ammonium levels affected the fungal processing of the organic material as well as the secretion of extracellular metabolites. Although ammonium additions did not increase the net production of mineral-adsorbed C, changes in the decomposition and secretion pathways altered the composition of the adsorbed organic matter. These changes may influence the properties of the organic matter-mineral associations and, thus, the stabilization of SOM.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30877120</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e03007-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.03007-18</ELocationID>
<Abstract>
<AbstractText>The interactions between dissolved organic matter (DOM) and mineral particles are critical for the stabilization of soil organic matter (SOM) in terrestrial ecosystems. The processing of DOM by ectomycorrhizal fungi contributes to the formation of mineral-stabilized SOM by two contrasting pathways: the extracellular transformation of DOM (
<i>ex vivo</i>
pathway) and the secretion of mineral-surface-reactive metabolites (
<i>in vivo</i>
pathway). In this study, we examined how changes in nitrogen (N) availability affected the formation of mineral-associated carbon (C) from these two pathways. DOM was extracted from forest soils. The processing of this DOM by the ectomycorrhizal fungus
<i>Paxillus involutus</i>
was examined in laboratory-scale studies with different levels of ammonium. At low levels of ammonium (i.e., under N-limited conditions), the DOM components were slightly oxidized, and fungal C metabolites with iron-reducing activity were secreted. Ammonium amendments decreased the amount of C metabolites, and no additional oxidation of the organic matter was detected. In contrast, the hydrolytic activity and the secretion of N-containing compounds increased, particularly when high levels of ammonium were added. Under these conditions, C, but not N, limited fungal growth. Although the overall production of mineral-associated organic C was not affected by ammonium concentrations, the observed shifts in the activities of the
<i>ex vivo</i>
and
<i>in vivo</i>
pathways affected the composition of organic matter adsorbed onto the mineral particles. Such changes will affect the properties of organic matter-mineral associations and, thus, ultimately, the stabilization of SOM.
<b>IMPORTANCE</b>
Nitrogen (N) availability plays a critical role in the cycling and storage of soil organic matter (SOM). However, large uncertainties remain in predicting the net effect of N addition on soil organic carbon (C) storage due to the complex interactions between organic matter, microbial activity, and mineral particles that determine the formation of stable SOM. Here, we attempted to disentangle the effects of ammonium on these interactions in controlled microcosm experiments including the ectomycorrhizal fungus
<i>P.</i>
<i>involutus</i>
and dissolved organic matter extracted from forest soils. Increased ammonium levels affected the fungal processing of the organic material as well as the secretion of extracellular metabolites. Although ammonium additions did not increase the net production of mineral-adsorbed C, changes in the decomposition and secretion pathways altered the composition of the adsorbed organic matter. These changes may influence the properties of the organic matter-mineral associations and, thus, the stabilization of SOM.</AbstractText>
<CopyrightInformation>Copyright © 2019 Wang et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-3715-7621</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden tao.wang@biol.lu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Zhaomo</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tunlid</LastName>
<ForeName>Anders</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Persson</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Microbial Ecology Group, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Environmental and Climate Research, Lund University, Lund, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064751">Ammonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008903">Minerals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000363" MajorTopicYN="N">Agaricales</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064751" MajorTopicYN="N">Ammonium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008903" MajorTopicYN="N">Minerals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">decomposition</Keyword>
<Keyword MajorTopicYN="Y">ectomycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">organic matter-mineral interaction</Keyword>
<Keyword MajorTopicYN="Y">soil organic matter</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30877120</ArticleId>
<ArticleId IdType="pii">AEM.03007-18</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.03007-18</ArticleId>
<ArticleId IdType="pmc">PMC6498167</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Glob Chang Biol. 2019 Jan;25(1):12-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30338884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jul 17;8(1):10834</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30018415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2015 Apr;91(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25778509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Feb;23(2):933-944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27562874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(2):411-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):875-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2017 Jul 25;2:17105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Sep 1;81(17):5662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26048933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2003 Oct 15;37(20):4702-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14594381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 05;478(7367):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21979045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Dec;81(24):8427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26431968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 3;528(7580):60-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26595271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Apr;24(4):1417-1427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29121419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2017 Dec;19(12):5117-5129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29124857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(1):335-343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29297591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Apr;13(4):977-988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30538275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Oct;161(4):657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19685081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1705-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Mar;8(3):699-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24173458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Oct 31;419(6910):915-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Oct;7(10):2010-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23788332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jun;14(6):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22469289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2012 Oct 16;28(41):14573-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22985265</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30877120
   |texte=   Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30877120" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020