Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.

Identifieur interne : 000452 ( Main/Corpus ); précédent : 000451; suivant : 000453

Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.

Auteurs : Li Xue ; Juliana Almario ; Izabela Fabia Ska ; Georgios Saridis ; Marcel Bucher

Source :

RBID : pubmed:31125425

English descriptors

Abstract

Most land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear. To understand the impact of AM symbiosis on fungal microbiota, ten Lotus japonicus mutants impaired at different stages of AM formation were grown in non-sterile natural soil and their root-associated fungal communities were studied. Plant mutants lacking the capacity to form mature arbuscules (arb- ) exhibited limited growth performance associated with altered phosphorus (P) acquisition and reduction-oxidation (redox) processes. Furthermore, arb- plants assembled moderately but consistently different root-associated fungal microbiota, characterized by the depletion of Glomeromycota and the concomitant enrichment of Ascomycota, including Dactylonectria torresensis. Single and co-inoculation experiments showed a strong reduction of root colonization by D. torresensis in the presence of AM fungus Rhizophagus irregularis, particularly in arbuscule-forming plants. Our results suggest that impairment of central symbiotic functions in AM host plants leads to specific changes in root microbiomes and in tripartite interactions between the host plant, AM and non-AM fungi. This lays the foundation for mechanistic studies on microbe-microbe and microbe-host interactions in AM symbiosis of the model L. japonicus.

DOI: 10.1111/nph.15958
PubMed: 31125425
PubMed Central: PMC6773208

Links to Exploration step

pubmed:31125425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Almario, Juliana" sort="Almario, Juliana" uniqKey="Almario J" first="Juliana" last="Almario">Juliana Almario</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabia Ska, Izabela" sort="Fabia Ska, Izabela" uniqKey="Fabia Ska I" first="Izabela" last="Fabia Ska">Izabela Fabia Ska</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saridis, Georgios" sort="Saridis, Georgios" uniqKey="Saridis G" first="Georgios" last="Saridis">Georgios Saridis</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31125425</idno>
<idno type="pmid">31125425</idno>
<idno type="doi">10.1111/nph.15958</idno>
<idno type="pmc">PMC6773208</idno>
<idno type="wicri:Area/Main/Corpus">000452</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000452</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Almario, Juliana" sort="Almario, Juliana" uniqKey="Almario J" first="Juliana" last="Almario">Juliana Almario</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fabia Ska, Izabela" sort="Fabia Ska, Izabela" uniqKey="Fabia Ska I" first="Izabela" last="Fabia Ska">Izabela Fabia Ska</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saridis, Georgios" sort="Saridis, Georgios" uniqKey="Saridis G" first="Georgios" last="Saridis">Georgios Saridis</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation>
<nlm:affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (genetics)</term>
<term>Ascomycota (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Lotus (genetics)</term>
<term>Lotus (growth & development)</term>
<term>Lotus (microbiology)</term>
<term>Mutation (genetics)</term>
<term>Mycobiome (genetics)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Symbiosis (genetics)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ascomycota</term>
<term>Lotus</term>
<term>Mutation</term>
<term>Mycobiome</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Lotus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lotus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Phenotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear. To understand the impact of AM symbiosis on fungal microbiota, ten Lotus japonicus mutants impaired at different stages of AM formation were grown in non-sterile natural soil and their root-associated fungal communities were studied. Plant mutants lacking the capacity to form mature arbuscules (arb
<sup>-</sup>
) exhibited limited growth performance associated with altered phosphorus (P) acquisition and reduction-oxidation (redox) processes. Furthermore, arb
<sup>-</sup>
plants assembled moderately but consistently different root-associated fungal microbiota, characterized by the depletion of Glomeromycota and the concomitant enrichment of Ascomycota, including Dactylonectria torresensis. Single and co-inoculation experiments showed a strong reduction of root colonization by D. torresensis in the presence of AM fungus Rhizophagus irregularis, particularly in arbuscule-forming plants. Our results suggest that impairment of central symbiotic functions in AM host plants leads to specific changes in root microbiomes and in tripartite interactions between the host plant, AM and non-AM fungi. This lays the foundation for mechanistic studies on microbe-microbe and microbe-host interactions in AM symbiosis of the model L. japonicus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31125425</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.</ArticleTitle>
<Pagination>
<MedlinePgn>409-420</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15958</ELocationID>
<Abstract>
<AbstractText>Most land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear. To understand the impact of AM symbiosis on fungal microbiota, ten Lotus japonicus mutants impaired at different stages of AM formation were grown in non-sterile natural soil and their root-associated fungal communities were studied. Plant mutants lacking the capacity to form mature arbuscules (arb
<sup>-</sup>
) exhibited limited growth performance associated with altered phosphorus (P) acquisition and reduction-oxidation (redox) processes. Furthermore, arb
<sup>-</sup>
plants assembled moderately but consistently different root-associated fungal microbiota, characterized by the depletion of Glomeromycota and the concomitant enrichment of Ascomycota, including Dactylonectria torresensis. Single and co-inoculation experiments showed a strong reduction of root colonization by D. torresensis in the presence of AM fungus Rhizophagus irregularis, particularly in arbuscule-forming plants. Our results suggest that impairment of central symbiotic functions in AM host plants leads to specific changes in root microbiomes and in tripartite interactions between the host plant, AM and non-AM fungi. This lays the foundation for mechanistic studies on microbe-microbe and microbe-host interactions in AM symbiosis of the model L. japonicus.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-9367-0155</Identifier>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Almario</LastName>
<ForeName>Juliana</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-1475-7819</Identifier>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fabiańska</LastName>
<ForeName>Izabela</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saridis</LastName>
<ForeName>Georgios</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bucher</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-1680-9413</Identifier>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070116" MajorTopicYN="N">Lotus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072761" MajorTopicYN="Y">Mycobiome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">RNA-seq</Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal (AM) fungi</Keyword>
<Keyword MajorTopicYN="Y">fungal community</Keyword>
<Keyword MajorTopicYN="Y">legume</Keyword>
<Keyword MajorTopicYN="Y">natural soil</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31125425</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15958</ArticleId>
<ArticleId IdType="pmc">PMC6773208</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):829-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):860-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Mar;12(2):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22059700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Mar;53(368):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9239-E9246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30209216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 08;6:1075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Oct;18(10):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23871659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):293-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 1993 May;9(3):342-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Nov;38(11):2398-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25495186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jan;81(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 23;543(7646):513-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Aug;56(8):1490-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26009592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Feb;217(3):1254-1266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29034978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1631-1645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Jan;22(1):11-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27666517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Mar;4(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Apr;65(4):1428-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10103232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 Jul 22;277(1691):2185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Dec;28(12):1271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26313411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Oct 21;7:1574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27864511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Aug;38(8):1591-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25630535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jul 20;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28726631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Dec 16;68(21-22):5871-5881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29186498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Nov 5;11(11):1344-1359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30292683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):854-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Jan;11(1):43-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27482927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Apr 25;26(8):1126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27115681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Mar;221(4):2123-2137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30317641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Jun 5;27(11):R420-R423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28586667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Nov;22(21):5271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 May 11;20(9):2380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1594460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 26;4:533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 18;4:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jun;53(373):1377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000452 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000452 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31125425
   |texte=   Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31125425" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020