Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.

Identifieur interne : 000451 ( Main/Corpus ); précédent : 000450; suivant : 000452

Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.

Auteurs : Xuhong Zhang ; Changzhi Han ; Huimin Gao ; Yanpo Cao

Source :

RBID : pubmed:31125808

English descriptors

Abstract

Soil salinity is one of the most abiotic stress factors that severely affects the growth and development of many plants, which can ultimately threaten crop yield. Arbuscular mycorrhiza fungi (AMF) has been proven to be effective in mitigating salinity stress by symbiosis in many crops. Asparagus officinalis are perennial plants grown in saline-alkaline soil, however, limited information on their molecular mechanisms has restricted efficient application of AMF to garden asparagus under salinity stress. In this study, we conducted a transcriptome analysis on the leaves of garden asparagus to identify gene expression under salinity stress. Seedlings were grown in 4 treatments, including non-inoculated AMF using distilled water (NI), inoculated AMF using distilled water (AMF), non-inoculated with salinity stress (NI + S), and inoculated with salinity stress (AMF + S). A total of 6019 novel genes were obtained based on the reference-guided assembly of the garden asparagus transcriptome. Results revealed that 455 differentially expressed genes (DEGs) were identified when comparing NI + S to AMF + S. However, among the up-regulated DEGs, 41 DEGs were down-regulated, while 242 DEGs had no differences in their expression levels when comparing NI to NI + S. These DEGs' expression patterns may be key induced by AMF under salinity stress. Additionally, the GO and KEGG enrichment analyses of 455 DEGs revealed that these genes mainly participate in the improvement of the internal environment in plant cells, nitrogen metabolic-related processes, and possible photoprotection mechanisms. These findings provide insight into enhanced salinity stress adaptation by AMF inoculation, as well as salt-tolerant candidate genes for further functional analyses.

DOI: 10.1016/j.plaphy.2019.05.013
PubMed: 31125808

Links to Exploration step

pubmed:31125808

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.</title>
<author>
<name sortKey="Zhang, Xuhong" sort="Zhang, Xuhong" uniqKey="Zhang X" first="Xuhong" last="Zhang">Xuhong Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Changzhi" sort="Han, Changzhi" uniqKey="Han C" first="Changzhi" last="Han">Changzhi Han</name>
<affiliation>
<nlm:affiliation>College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, 650224, China; The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province (Southwest Forestry University), China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Huimin" sort="Gao, Huimin" uniqKey="Gao H" first="Huimin" last="Gao">Huimin Gao</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Yanpo" sort="Cao, Yanpo" uniqKey="Cao Y" first="Yanpo" last="Cao">Yanpo Cao</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China. Electronic address: caoyanpo@126.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31125808</idno>
<idno type="pmid">31125808</idno>
<idno type="doi">10.1016/j.plaphy.2019.05.013</idno>
<idno type="wicri:Area/Main/Corpus">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000451</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.</title>
<author>
<name sortKey="Zhang, Xuhong" sort="Zhang, Xuhong" uniqKey="Zhang X" first="Xuhong" last="Zhang">Xuhong Zhang</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Changzhi" sort="Han, Changzhi" uniqKey="Han C" first="Changzhi" last="Han">Changzhi Han</name>
<affiliation>
<nlm:affiliation>College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, 650224, China; The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province (Southwest Forestry University), China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gao, Huimin" sort="Gao, Huimin" uniqKey="Gao H" first="Huimin" last="Gao">Huimin Gao</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Yanpo" sort="Cao, Yanpo" uniqKey="Cao Y" first="Yanpo" last="Cao">Yanpo Cao</name>
<affiliation>
<nlm:affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China. Electronic address: caoyanpo@126.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology and biochemistry : PPB</title>
<idno type="eISSN">1873-2690</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asparagus Plant (genetics)</term>
<term>Asparagus Plant (microbiology)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Metabolomics (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (chemistry)</term>
<term>Photochemistry (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (genetics)</term>
<term>Salinity (MeSH)</term>
<term>Salt Stress (MeSH)</term>
<term>Salt Tolerance (MeSH)</term>
<term>Salts (chemistry)</term>
<term>Seedlings (MeSH)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nitrogen</term>
<term>Salts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Asparagus Plant</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Asparagus Plant</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genome, Plant</term>
<term>Metabolomics</term>
<term>Photochemistry</term>
<term>Salinity</term>
<term>Salt Stress</term>
<term>Salt Tolerance</term>
<term>Seedlings</term>
<term>Sequence Analysis, RNA</term>
<term>Symbiosis</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil salinity is one of the most abiotic stress factors that severely affects the growth and development of many plants, which can ultimately threaten crop yield. Arbuscular mycorrhiza fungi (AMF) has been proven to be effective in mitigating salinity stress by symbiosis in many crops. Asparagus officinalis are perennial plants grown in saline-alkaline soil, however, limited information on their molecular mechanisms has restricted efficient application of AMF to garden asparagus under salinity stress. In this study, we conducted a transcriptome analysis on the leaves of garden asparagus to identify gene expression under salinity stress. Seedlings were grown in 4 treatments, including non-inoculated AMF using distilled water (NI), inoculated AMF using distilled water (AMF), non-inoculated with salinity stress (NI + S), and inoculated with salinity stress (AMF + S). A total of 6019 novel genes were obtained based on the reference-guided assembly of the garden asparagus transcriptome. Results revealed that 455 differentially expressed genes (DEGs) were identified when comparing NI + S to AMF + S. However, among the up-regulated DEGs, 41 DEGs were down-regulated, while 242 DEGs had no differences in their expression levels when comparing NI to NI + S. These DEGs' expression patterns may be key induced by AMF under salinity stress. Additionally, the GO and KEGG enrichment analyses of 455 DEGs revealed that these genes mainly participate in the improvement of the internal environment in plant cells, nitrogen metabolic-related processes, and possible photoprotection mechanisms. These findings provide insight into enhanced salinity stress adaptation by AMF inoculation, as well as salt-tolerant candidate genes for further functional analyses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31125808</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2690</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>141</Volume>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology and biochemistry : PPB</Title>
<ISOAbbreviation>Plant Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.</ArticleTitle>
<Pagination>
<MedlinePgn>20-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0981-9428(19)30201-3</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.plaphy.2019.05.013</ELocationID>
<Abstract>
<AbstractText>Soil salinity is one of the most abiotic stress factors that severely affects the growth and development of many plants, which can ultimately threaten crop yield. Arbuscular mycorrhiza fungi (AMF) has been proven to be effective in mitigating salinity stress by symbiosis in many crops. Asparagus officinalis are perennial plants grown in saline-alkaline soil, however, limited information on their molecular mechanisms has restricted efficient application of AMF to garden asparagus under salinity stress. In this study, we conducted a transcriptome analysis on the leaves of garden asparagus to identify gene expression under salinity stress. Seedlings were grown in 4 treatments, including non-inoculated AMF using distilled water (NI), inoculated AMF using distilled water (AMF), non-inoculated with salinity stress (NI + S), and inoculated with salinity stress (AMF + S). A total of 6019 novel genes were obtained based on the reference-guided assembly of the garden asparagus transcriptome. Results revealed that 455 differentially expressed genes (DEGs) were identified when comparing NI + S to AMF + S. However, among the up-regulated DEGs, 41 DEGs were down-regulated, while 242 DEGs had no differences in their expression levels when comparing NI to NI + S. These DEGs' expression patterns may be key induced by AMF under salinity stress. Additionally, the GO and KEGG enrichment analyses of 455 DEGs revealed that these genes mainly participate in the improvement of the internal environment in plant cells, nitrogen metabolic-related processes, and possible photoprotection mechanisms. These findings provide insight into enhanced salinity stress adaptation by AMF inoculation, as well as salt-tolerant candidate genes for further functional analyses.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Masson SAS. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xuhong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Changzhi</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Biodiversity Conservation and Utilization, Southwest Forestry University, Kunming, 650224, China; The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province (Southwest Forestry University), China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Huimin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Yanpo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China. Electronic address: caoyanpo@126.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Plant Physiol Biochem</MedlineTA>
<NlmUniqueID>9882449</NlmUniqueID>
<ISSNLinking>0981-9428</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012492">Salts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027761" MajorTopicYN="N">Asparagus Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010777" MajorTopicYN="N">Photochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077323" MajorTopicYN="Y">Salt Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012492" MajorTopicYN="N">Salts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">DEGs</Keyword>
<Keyword MajorTopicYN="N">Garden asparagus</Keyword>
<Keyword MajorTopicYN="N">Salinity stress</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31125808</ArticleId>
<ArticleId IdType="pii">S0981-9428(19)30201-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.plaphy.2019.05.013</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000451 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000451 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31125808
   |texte=   Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31125808" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020