Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Resource allocation to growth or luxury consumption drives mycorrhizal responses.

Identifieur interne : 000363 ( Main/Corpus ); précédent : 000362; suivant : 000364

Resource allocation to growth or luxury consumption drives mycorrhizal responses.

Auteurs : Rohan C. Riley ; Timothy R. Cavagnaro ; Chris Brien ; F Andrew Smith ; Sally E. Smith ; Bettina Berger ; Trevor Garnett ; Rebecca Stonor ; Rhiannon K. Schilling ; Zhong-Hua Chen ; Jeff R. Powell

Source :

RBID : pubmed:31370098

English descriptors

Abstract

Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant-fungal mutualisms. Using non-invasive high-throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P-limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3-1) utilised P transferred from the fungus to achieve improved growth under P-limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype-specific resource economics drive phenotypic outcomes during AM symbioses.

DOI: 10.1111/ele.13353
PubMed: 31370098

Links to Exploration step

pubmed:31370098

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resource allocation to growth or luxury consumption drives mycorrhizal responses.</title>
<author>
<name sortKey="Riley, Rohan C" sort="Riley, Rohan C" uniqKey="Riley R" first="Rohan C" last="Riley">Rohan C. Riley</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cavagnaro, Timothy R" sort="Cavagnaro, Timothy R" uniqKey="Cavagnaro T" first="Timothy R" last="Cavagnaro">Timothy R. Cavagnaro</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brien, Chris" sort="Brien, Chris" uniqKey="Brien C" first="Chris" last="Brien">Chris Brien</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Phenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, F Andrew" sort="Smith, F Andrew" uniqKey="Smith F" first="F Andrew" last="Smith">F Andrew Smith</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Sally E" sort="Smith, Sally E" uniqKey="Smith S" first="Sally E" last="Smith">Sally E. Smith</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Berger, Bettina" sort="Berger, Bettina" uniqKey="Berger B" first="Bettina" last="Berger">Bettina Berger</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garnett, Trevor" sort="Garnett, Trevor" uniqKey="Garnett T" first="Trevor" last="Garnett">Trevor Garnett</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stonor, Rebecca" sort="Stonor, Rebecca" uniqKey="Stonor R" first="Rebecca" last="Stonor">Rebecca Stonor</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Rhiannon K" sort="Schilling, Rhiannon K" uniqKey="Schilling R" first="Rhiannon K" last="Schilling">Rhiannon K. Schilling</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhong Hua" sort="Chen, Zhong Hua" uniqKey="Chen Z" first="Zhong-Hua" last="Chen">Zhong-Hua Chen</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Science and Health, Western Sydney University, Penrith, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Powell, Jeff R" sort="Powell, Jeff R" uniqKey="Powell J" first="Jeff R" last="Powell">Jeff R. Powell</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31370098</idno>
<idno type="pmid">31370098</idno>
<idno type="doi">10.1111/ele.13353</idno>
<idno type="wicri:Area/Main/Corpus">000363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000363</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Resource allocation to growth or luxury consumption drives mycorrhizal responses.</title>
<author>
<name sortKey="Riley, Rohan C" sort="Riley, Rohan C" uniqKey="Riley R" first="Rohan C" last="Riley">Rohan C. Riley</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cavagnaro, Timothy R" sort="Cavagnaro, Timothy R" uniqKey="Cavagnaro T" first="Timothy R" last="Cavagnaro">Timothy R. Cavagnaro</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brien, Chris" sort="Brien, Chris" uniqKey="Brien C" first="Chris" last="Brien">Chris Brien</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Phenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, F Andrew" sort="Smith, F Andrew" uniqKey="Smith F" first="F Andrew" last="Smith">F Andrew Smith</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Sally E" sort="Smith, Sally E" uniqKey="Smith S" first="Sally E" last="Smith">Sally E. Smith</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Berger, Bettina" sort="Berger, Bettina" uniqKey="Berger B" first="Bettina" last="Berger">Bettina Berger</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garnett, Trevor" sort="Garnett, Trevor" uniqKey="Garnett T" first="Trevor" last="Garnett">Trevor Garnett</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stonor, Rebecca" sort="Stonor, Rebecca" uniqKey="Stonor R" first="Rebecca" last="Stonor">Rebecca Stonor</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Rhiannon K" sort="Schilling, Rhiannon K" uniqKey="Schilling R" first="Rhiannon K" last="Schilling">Rhiannon K. Schilling</name>
<affiliation>
<nlm:affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhong Hua" sort="Chen, Zhong Hua" uniqKey="Chen Z" first="Zhong-Hua" last="Chen">Zhong-Hua Chen</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Science and Health, Western Sydney University, Penrith, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Powell, Jeff R" sort="Powell, Jeff R" uniqKey="Powell J" first="Jeff R" last="Powell">Jeff R. Powell</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology letters</title>
<idno type="eISSN">1461-0248</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen (MeSH)</term>
<term>Phosphorus (MeSH)</term>
<term>Resource Allocation (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nitrogen</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mycorrhizae</term>
<term>Resource Allocation</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant-fungal mutualisms. Using non-invasive high-throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P-limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3-1) utilised P transferred from the fungus to achieve improved growth under P-limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype-specific resource economics drive phenotypic outcomes during AM symbioses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31370098</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1461-0248</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Ecology letters</Title>
<ISOAbbreviation>Ecol Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Resource allocation to growth or luxury consumption drives mycorrhizal responses.</ArticleTitle>
<Pagination>
<MedlinePgn>1757-1766</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ele.13353</ELocationID>
<Abstract>
<AbstractText>Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant-fungal mutualisms. Using non-invasive high-throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P-limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3-1) utilised P transferred from the fungus to achieve improved growth under P-limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype-specific resource economics drive phenotypic outcomes during AM symbioses.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd/CNRS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riley</LastName>
<ForeName>Rohan C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cavagnaro</LastName>
<ForeName>Timothy R</ForeName>
<Initials>TR</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brien</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0581-1817</Identifier>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Phenomics and Bioinformatics Research Centre, University of South Australia, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>F Andrew</ForeName>
<Initials>FA</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Sally E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berger</LastName>
<ForeName>Bettina</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garnett</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stonor</LastName>
<ForeName>Rebecca</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schilling</LastName>
<ForeName>Rhiannon K</ForeName>
<Initials>RK</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8853-6878</Identifier>
<AffiliationInfo>
<Affiliation>The Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Zhong-Hua</ForeName>
<Initials>ZH</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Science and Health, Western Sydney University, Penrith, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powell</LastName>
<ForeName>Jeff R</ForeName>
<Initials>JR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1091-2452</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Austrailia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DP140103936</GrantID>
<Agency>Australian Research Council</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016422">Letter</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Lett</MedlineTA>
<NlmUniqueID>101121949</NlmUniqueID>
<ISSNLinking>1461-023X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040841" MajorTopicYN="N">Resource Allocation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biodiversity</Keyword>
<Keyword MajorTopicYN="N">competition</Keyword>
<Keyword MajorTopicYN="N">ecosystem function</Keyword>
<Keyword MajorTopicYN="N">functional traits</Keyword>
<Keyword MajorTopicYN="N">growth strategy</Keyword>
<Keyword MajorTopicYN="N">plant-microbe interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31370098</ArticleId>
<ArticleId IdType="doi">10.1111/ele.13353</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Ågren, G.I., Wetterstedt, J.Å.M. & Billberger, M.F.K. (2012). Nutrient limitation on terrestrial plant growth - modeling the interaction between nitrogen and phosphorus. New Phytol., 194, 953-960.</Citation>
</Reference>
<Reference>
<Citation>Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y.S. et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun, 7, 13342.</Citation>
</Reference>
<Reference>
<Citation>Brien, C.J. (2017). asremlPlus: Augments the Use of ASReml-R in Fitting Mixed Models. Available at: http://chris.brien.name/rpackages. Last accessed 3 September 2018.</Citation>
</Reference>
<Reference>
<Citation>Brien, C.J. & Demetrio, C. (2009). Formulating mixed models for experiments, including longitudinal experiments. J. Agric. Biol. Environ. Stat., 14, 253-280.</Citation>
</Reference>
<Reference>
<Citation>Brutnell, T.P., Bennetzen, J.L. & Vogel, J.P. (2015). Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu. Rev. Plant Biol., 66, 465-485.</Citation>
</Reference>
<Reference>
<Citation>Butler, D.G. (2017). asreml4: Fits the Linear Mixed Model. Version 4.1.0. Available at: http://www.vsni.co.uk/. Last accessed 3 August 2018.</Citation>
</Reference>
<Reference>
<Citation>Butler, D., Cullis, B., Gilmour, A. & Gogel, B. (2009). Analysis of Mixed Models for S-Language Environments: ASReml-R Reference Manual. Queensland DPI, Brisbane.</Citation>
</Reference>
<Reference>
<Citation>Cavagnaro, T.R., Smith, F.A., Ayling, S.M. & Smith, S.E. (2003). Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol., 157, 127-134.</Citation>
</Reference>
<Reference>
<Citation>Donn, S., Kawasaki, A., Delroy, B., Chochois, V., Watt, M. & Powell, J.R. (2017). Root type is not an important driver of mycorrhizal colonisation in Brachypodium distachyon. Pedobiologia, 65, 5-15.</Citation>
</Reference>
<Reference>
<Citation>Elser, J.J., Fagan, W.F., Kerkhoff, A.J., Swenson, N.G. & Enquist, B.J. (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol., 186, 593-608.</Citation>
</Reference>
<Reference>
<Citation>Evans, J.R. (1983). Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol., 72, 297-302.</Citation>
</Reference>
<Reference>
<Citation>Grime, J.P., Mackey, J.M.L., Hillier, S.H. & Read, D.J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420-422.</Citation>
</Reference>
<Reference>
<Citation>Hartnett, D.C. & Wilson, G.W.T. (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. In: S. E. Smith & F. A. Smith (Eds.), Diversity and Integration in Mycorrhizas, Developments in Plant and Soil Sciences. Springer, Dordrecht, pp. 319-331.</Citation>
</Reference>
<Reference>
<Citation>Hermans, C., Hammond, J.P., White, P.J. & Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., 11, 610-617.</Citation>
</Reference>
<Reference>
<Citation>Hetrick, B., Wilson, G. & Cox, T. (1992). Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J. Bot., 70, 2032-2040.</Citation>
</Reference>
<Reference>
<Citation>Hetrick, B.A.D., Wilson, G.W.T. & Todd, T.C. (1996). Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J. Bot., 74, 19-25.</Citation>
</Reference>
<Reference>
<Citation>Hilbert, D.W. (1990). Optimization of plant root: shoot ratios and internal nitrogen concentration. Ann. Bot., 66, 91-99.</Citation>
</Reference>
<Reference>
<Citation>Hong, J.J., Park, Y.-S., Bravo, A., Bhattarai, K.K., Daniels, D.A. & Harrison, M.J. (2012). Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta, 236, 851-865.</Citation>
</Reference>
<Reference>
<Citation>Ingram, P.A., Zhu, J., Shariff, A., Davis, I.W., Benfey, P.N. & Elich, T. (2012). High-throughput imaging and analysis of root system architecture in Brachypodium distachyon under differential nutrient availability. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367, 1559-1569.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N.C., Graham, J.H. & Smith, F.A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytot., 135, 575-585.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M. & Bowker, M.A. (2015). Mycorrhizal phenotypes and the Law of the Minimum. New Phytol., 205, 1473-1484.</Citation>
</Reference>
<Reference>
<Citation>Kaeppler, S.M., Parke, J.L., Mueller, S.M., Senior, L., Stuber, C. & Tracy, W.F. (2000). Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci., 40, 358-364.</Citation>
</Reference>
<Reference>
<Citation>Kiers, E.T. & van der Heijden, M.G.A. (2006). Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology, 87, 1627-1636.</Citation>
</Reference>
<Reference>
<Citation>Kiers, E.T., West, S.A., Wyatt, G.A.K., Gardner, A., Bücking, H. & Werner, G.D.A. (2016). Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat. Plants, 2, 16063.</Citation>
</Reference>
<Reference>
<Citation>Klironomos, J.N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292-2301.</Citation>
</Reference>
<Reference>
<Citation>Lambers, H. & Poorter, H. (2004). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res., 34, 283-362.</Citation>
</Reference>
<Reference>
<Citation>Lehnert, H., Serfling, A., Friedt, W. & Ordon, F. (2018). Genome-wide association studies reveal genomic regions associated with the response of wheat (Triticum aestivum L.) to mycorrhizae under drought stress conditions. Front. Plant Sci., 9, 1728.</Citation>
</Reference>
<Reference>
<Citation>Mariotte, P. (2014). Do subordinate species punch above their weight? Evidence from above- and below-ground. New Phytol., 203, 16-21.</Citation>
</Reference>
<Reference>
<Citation>Mariotte, P., Canarini, A. & Dijkstra, F.A. (2017). Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought. J. Ecol., 105, 958-967.</Citation>
</Reference>
<Reference>
<Citation>Martin, T., Oswald, O. & Graham, I.A. (2002). Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol., 128, 472-481.</Citation>
</Reference>
<Reference>
<Citation>Matos, D.A., Cole, B.J., Whitney, I.P., MacKinnon, K.J.-M., Kay, S.A. & Hazen, S.P. (2014). Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon. PLoS ONE, 9, e100072.</Citation>
</Reference>
<Reference>
<Citation>McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L. & Swan, J.A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol., 115, 495-501.</Citation>
</Reference>
<Reference>
<Citation>Neilson, E.H., Edwards, A.M., Blomstedt, C.K., Berger, B., Møller, B.L. & Gleadow, R.M. (2015). Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot., 66, 1817-1832.</Citation>
</Reference>
<Reference>
<Citation>Newsham, K., Watkinson, A., West, H. & Fitter, A. (1995). Symbiotic fungi determine plant community structure: changes in a lichen-rich community induced by fungicide application. Funct. Ecol., 442-447.</Citation>
</Reference>
<Reference>
<Citation>O’Connor, P.J., Smith, S.E. & Smith, F.A. (2002). Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol., 154, 209-218.</Citation>
</Reference>
<Reference>
<Citation>Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R. et al. (2013). vegan: Community Ecology Package. R package. https://CRAN.R-project.org/package=vegan. Last accessed 3 September 2018.</Citation>
</Reference>
<Reference>
<Citation>Persson, J., Fink, P., Goto, A., Hood, J.M., Jonas, J. & Kato, S. (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.</Citation>
</Reference>
<Reference>
<Citation>Plett, J.M., Plett, K.L., Bithell, S.L., Mitchell, C., Moore, K., Powell, J.R. et al. (2016). improved Phytophthora resistance in commercial chickpea (Cicer arietinum) varieties negatively impacts symbiotic gene signalling and symbiotic potential in some varieties. Plant Cell Environ., 39, 1858-1869.</Citation>
</Reference>
<Reference>
<Citation>Powell, J.R. & Rillig, M.C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol., 220, 1059-1075.</Citation>
</Reference>
<Reference>
<Citation>R Core Development and Team. (2017). R: A language and environment for statistical computing. Vienna.</Citation>
</Reference>
<Reference>
<Citation>Sage, R.F. (1995). Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob. Change Biol., 1, 93-106.</Citation>
</Reference>
<Reference>
<Citation>Sawers, R.J.H., Gutjahr, C. & Paszkowski, U. (2008). Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci., 13, 93-97.</Citation>
</Reference>
<Reference>
<Citation>Shi, H., Ye, T., Song, B., Qi, X. & Chan, Z. (2015). Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta Physiol. Plant., 37, 122.</Citation>
</Reference>
<Reference>
<Citation>Sistla, S.A. & Schimel, J.P. (2012). Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol., 196, 68-78.</Citation>
</Reference>
<Reference>
<Citation>Smith, S.E. & Read, D.J. (2008). Mycorrhizal Symbiosis. Academic Press, Amsterdam.</Citation>
</Reference>
<Reference>
<Citation>Sterner, R.W. & Elser, J.J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.</Citation>
</Reference>
<Reference>
<Citation>Urcelay, C. & Díaz, S. (2003). The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol. Lett., 6, 388-391.</Citation>
</Reference>
<Reference>
<Citation>van der Heijden, M.G. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol. Lett., 7, 293-303.</Citation>
</Reference>
<Reference>
<Citation>van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.</Citation>
</Reference>
<Reference>
<Citation>van der Heijden, M.G.A. & Walder, F. (2016). Reply to ‘Misconceptions on the application of biological market theory to the mycorrhizal symbiosis’. Nat. Plants, 2, 16062.</Citation>
</Reference>
<Reference>
<Citation>Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. (1998). Ink and vinegar, a simple staining technique for srbuscular-mycorrhizal fungi. Appl. Environ. Microbiol., 64, 5004-5007.</Citation>
</Reference>
<Reference>
<Citation>Vogel, J.P., Garvin, D.F., Leong, O.M. & Hayden, D.M. (2006). Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss. Organ Cult., 84, 199-211.</Citation>
</Reference>
<Reference>
<Citation>Walder, F. & van der Heijden, M.G.A. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants, 1, 15159.</Citation>
</Reference>
<Reference>
<Citation>Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.</Citation>
</Reference>
<Reference>
<Citation>Yang, G., Yang, X., Zhang, W., Wei, Y., Ge, G., Lu, W. et al. (2016). Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity. Oikos, 125, 576-585.</Citation>
</Reference>
<Reference>
<Citation>Yu, Q., Chen, Q., Elser, J.J., He, N., Wu, H., Zhang, G. et al. (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol Lett., 13, 1390-1399.</Citation>
</Reference>
<Reference>
<Citation>Yu, Q., Elser, J.J., He, N., Wu, H., Chen, Q., Zhang, G. et al. (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.</Citation>
</Reference>
<Reference>
<Citation>Yu, Q., Wilcox, K., Pierre, K.L., Knapp, A.K., Han, X. & Smith, M.D. (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.</Citation>
</Reference>
<Reference>
<Citation>Zhang, J. & Elser, J.J. (2017). Carbon : nitrogen : phosphorus stoichiometry in fungi: a meta-analysis. Front. Microbiol., 8, 1281.</Citation>
</Reference>
<Reference>
<Citation>Zhu, Y.-G., Smith, S.E., Barritt, A.R. & Smith, F.A. (2001). Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil, 237, 249-255.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000363 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000363 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31370098
   |texte=   Resource allocation to growth or luxury consumption drives mycorrhizal responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31370098" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020