Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.

Identifieur interne : 000362 ( Main/Corpus ); précédent : 000361; suivant : 000363

Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.

Auteurs : Vojt Ch Beneš ; Tereza Leonhardt ; Antonín Ka A ; Jan Sáck ; Pavel Kotrba

Source :

RBID : pubmed:31372834

English descriptors

Abstract

Homeostatic mechanisms preventing the toxicity of heavy metal ions in cells involve, among others, compartmentalization and binding with peptidaceous ligands, particularly the cysteinyl-rich metallothioneins (MTs). We have previously shown that in natural conditions Zn-overaccumulating ectomycorrhizal (EM) fungus Russula bresadolae stores nearly 40% of Zn bound with cysteinyl- and hystidyl-containing RaZBP peptides, which resemble MTs, while the detoxification of Zn and Cd in EM Hebeloma mesophaeum relies upon compartmentalization in small vesicles and vacuoles, respectively. Here, we examined the performance of RaZBP1 gene expressed in H. mesophaeum mycelium with respect to handling of Zn and Cd. Expression of RaZBP1 impaired growth of the mycelium on low-Zn medium by 60%, the growth was partly ameliorated upon the addition of Zn and remained considerable up to 2 mmol/L Zn, while the growth of the wild-type and control mycelia transformed with empty T-DNA was severely reduced in the presence of 0.5 mmol/L Zn; furthermore, RaZBP1 slightly added to Cd tolerance in the range of Cd concentrations of 0.625 to 8 μmol/L. Staining of Zn- or Cd-exposed hyphal cells with Zn- or Cd-specific fluorescent tracers did not indicate that the expression of RaZBP1 would redirect the flow of the metals away from their innate sinks. Size exclusion chromatography of extracted metal species revealed that the complexes corresponding to Zn/Cd-RaZBP1 are present only in minute levels. Considering that RaZBP1 inhibited growth at low Zn, and despite the benefit that it provided to H. mesophaeum in the presence of high Zn and moderate Cd, these data indicate that the binding of excess Zn and Cd with RaZBP1 is not a trait that would be outright transmitted to H. mesophaeum.

DOI: 10.1007/s12223-019-00696-1
PubMed: 31372834

Links to Exploration step

pubmed:31372834

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.</title>
<author>
<name sortKey="Benes, Vojt Ch" sort="Benes, Vojt Ch" uniqKey="Benes V" first="Vojt Ch" last="Beneš">Vojt Ch Beneš</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leonhardt, Tereza" sort="Leonhardt, Tereza" uniqKey="Leonhardt T" first="Tereza" last="Leonhardt">Tereza Leonhardt</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ka A, Antonin" sort="Ka A, Antonin" uniqKey="Ka A A" first="Antonín" last="Ka A">Antonín Ka A</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sack, Jan" sort="Sack, Jan" uniqKey="Sack J" first="Jan" last="Sáck">Jan Sáck</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kotrba, Pavel" sort="Kotrba, Pavel" uniqKey="Kotrba P" first="Pavel" last="Kotrba">Pavel Kotrba</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic. pavel.kotrba@vscht.cz.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31372834</idno>
<idno type="pmid">31372834</idno>
<idno type="doi">10.1007/s12223-019-00696-1</idno>
<idno type="wicri:Area/Main/Corpus">000362</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000362</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.</title>
<author>
<name sortKey="Benes, Vojt Ch" sort="Benes, Vojt Ch" uniqKey="Benes V" first="Vojt Ch" last="Beneš">Vojt Ch Beneš</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leonhardt, Tereza" sort="Leonhardt, Tereza" uniqKey="Leonhardt T" first="Tereza" last="Leonhardt">Tereza Leonhardt</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ka A, Antonin" sort="Ka A, Antonin" uniqKey="Ka A A" first="Antonín" last="Ka A">Antonín Ka A</name>
<affiliation>
<nlm:affiliation>Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sack, Jan" sort="Sack, Jan" uniqKey="Sack J" first="Jan" last="Sáck">Jan Sáck</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kotrba, Pavel" sort="Kotrba, Pavel" uniqKey="Kotrba P" first="Pavel" last="Kotrba">Pavel Kotrba</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic. pavel.kotrba@vscht.cz.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Folia microbiologica</title>
<idno type="eISSN">1874-9356</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Cadmium (metabolism)</term>
<term>Cytoplasmic Vesicles (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Hebeloma (genetics)</term>
<term>Hebeloma (growth & development)</term>
<term>Hebeloma (metabolism)</term>
<term>Metallothionein (genetics)</term>
<term>Metallothionein (metabolism)</term>
<term>Mycelium (genetics)</term>
<term>Mycelium (growth & development)</term>
<term>Mycelium (metabolism)</term>
<term>Mycorrhizae (genetics)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Metallothionein</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Fungal Proteins</term>
<term>Metallothionein</term>
<term>Recombinant Proteins</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Hebeloma</term>
<term>Mycelium</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hebeloma</term>
<term>Mycelium</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasmic Vesicles</term>
<term>Hebeloma</term>
<term>Mycelium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Homeostatic mechanisms preventing the toxicity of heavy metal ions in cells involve, among others, compartmentalization and binding with peptidaceous ligands, particularly the cysteinyl-rich metallothioneins (MTs). We have previously shown that in natural conditions Zn-overaccumulating ectomycorrhizal (EM) fungus Russula bresadolae stores nearly 40% of Zn bound with cysteinyl- and hystidyl-containing RaZBP peptides, which resemble MTs, while the detoxification of Zn and Cd in EM Hebeloma mesophaeum relies upon compartmentalization in small vesicles and vacuoles, respectively. Here, we examined the performance of RaZBP1 gene expressed in H. mesophaeum mycelium with respect to handling of Zn and Cd. Expression of RaZBP1 impaired growth of the mycelium on low-Zn medium by 60%, the growth was partly ameliorated upon the addition of Zn and remained considerable up to 2 mmol/L Zn, while the growth of the wild-type and control mycelia transformed with empty T-DNA was severely reduced in the presence of 0.5 mmol/L Zn; furthermore, RaZBP1 slightly added to Cd tolerance in the range of Cd concentrations of 0.625 to 8 μmol/L. Staining of Zn- or Cd-exposed hyphal cells with Zn- or Cd-specific fluorescent tracers did not indicate that the expression of RaZBP1 would redirect the flow of the metals away from their innate sinks. Size exclusion chromatography of extracted metal species revealed that the complexes corresponding to Zn/Cd-RaZBP1 are present only in minute levels. Considering that RaZBP1 inhibited growth at low Zn, and despite the benefit that it provided to H. mesophaeum in the presence of high Zn and moderate Cd, these data indicate that the binding of excess Zn and Cd with RaZBP1 is not a trait that would be outright transmitted to H. mesophaeum.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31372834</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1874-9356</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>64</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Folia microbiologica</Title>
<ISOAbbreviation>Folia Microbiol (Praha)</ISOAbbreviation>
</Journal>
<ArticleTitle>Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.</ArticleTitle>
<Pagination>
<MedlinePgn>835-844</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12223-019-00696-1</ELocationID>
<Abstract>
<AbstractText>Homeostatic mechanisms preventing the toxicity of heavy metal ions in cells involve, among others, compartmentalization and binding with peptidaceous ligands, particularly the cysteinyl-rich metallothioneins (MTs). We have previously shown that in natural conditions Zn-overaccumulating ectomycorrhizal (EM) fungus Russula bresadolae stores nearly 40% of Zn bound with cysteinyl- and hystidyl-containing RaZBP peptides, which resemble MTs, while the detoxification of Zn and Cd in EM Hebeloma mesophaeum relies upon compartmentalization in small vesicles and vacuoles, respectively. Here, we examined the performance of RaZBP1 gene expressed in H. mesophaeum mycelium with respect to handling of Zn and Cd. Expression of RaZBP1 impaired growth of the mycelium on low-Zn medium by 60%, the growth was partly ameliorated upon the addition of Zn and remained considerable up to 2 mmol/L Zn, while the growth of the wild-type and control mycelia transformed with empty T-DNA was severely reduced in the presence of 0.5 mmol/L Zn; furthermore, RaZBP1 slightly added to Cd tolerance in the range of Cd concentrations of 0.625 to 8 μmol/L. Staining of Zn- or Cd-exposed hyphal cells with Zn- or Cd-specific fluorescent tracers did not indicate that the expression of RaZBP1 would redirect the flow of the metals away from their innate sinks. Size exclusion chromatography of extracted metal species revealed that the complexes corresponding to Zn/Cd-RaZBP1 are present only in minute levels. Considering that RaZBP1 inhibited growth at low Zn, and despite the benefit that it provided to H. mesophaeum in the presence of high Zn and moderate Cd, these data indicate that the binding of excess Zn and Cd with RaZBP1 is not a trait that would be outright transmitted to H. mesophaeum.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Beneš</LastName>
<ForeName>Vojtěch</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leonhardt</LastName>
<ForeName>Tereza</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaňa</LastName>
<ForeName>Antonín</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sácký</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kotrba</LastName>
<ForeName>Pavel</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7111-0317</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic. pavel.kotrba@vscht.cz.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>16-15065S</GrantID>
<Agency>Grantová Agentura České Republiky</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Folia Microbiol (Praha)</MedlineTA>
<NlmUniqueID>0376757</NlmUniqueID>
<ISSNLinking>0015-5632</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022162" MajorTopicYN="N">Cytoplasmic Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055364" MajorTopicYN="N">Hebeloma</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31372834</ArticleId>
<ArticleId IdType="doi">10.1007/s12223-019-00696-1</ArticleId>
<ArticleId IdType="pii">10.1007/s12223-019-00696-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Biotechnol. 2010 Mar;3(2):178-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21255319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Jun;67:3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24674773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 May;48(5):496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21134481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22626733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Apr 5;228(4695):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17811549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2006 Nov 10;126(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16814894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18565-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2008 Feb;54(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 07;6:29226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27384974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 May;32(4):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Feb;67(2):948-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2018 Nov 14;10(11):1549-1559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30229264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2011 Oct;16(7):991-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21823038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1088-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Sep;6(9):1693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Apr 30;284(5415):805-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10221913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1974 Dec 11;61(3):920-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4451567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2013 Sep;5(9):1225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Mar;42(3):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15707840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Jul;115(7):643-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000362 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000362 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31372834
   |texte=   Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31372834" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020