Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.

Identifieur interne : 000182 ( Main/Corpus ); précédent : 000181; suivant : 000183

Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.

Auteurs : Jonathan T. Bauer ; Liz Koziol ; James D. Bever

Source :

RBID : pubmed:31989319

English descriptors

Abstract

Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.

DOI: 10.1007/s00442-020-04598-9
PubMed: 31989319

Links to Exploration step

pubmed:31989319

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.</title>
<author>
<name sortKey="Bauer, Jonathan T" sort="Bauer, Jonathan T" uniqKey="Bauer J" first="Jonathan T" last="Bauer">Jonathan T. Bauer</name>
<affiliation>
<nlm:affiliation>Department of Biology, Miami University, 700 E High St, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute for the Environment and Sustainability, Miami University, 250 S. Patterson Ave, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koziol, Liz" sort="Koziol, Liz" uniqKey="Koziol L" first="Liz" last="Koziol">Liz Koziol</name>
<affiliation>
<nlm:affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bever, James D" sort="Bever, James D" uniqKey="Bever J" first="James D" last="Bever">James D. Bever</name>
<affiliation>
<nlm:affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31989319</idno>
<idno type="pmid">31989319</idno>
<idno type="doi">10.1007/s00442-020-04598-9</idno>
<idno type="wicri:Area/Main/Corpus">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.</title>
<author>
<name sortKey="Bauer, Jonathan T" sort="Bauer, Jonathan T" uniqKey="Bauer J" first="Jonathan T" last="Bauer">Jonathan T. Bauer</name>
<affiliation>
<nlm:affiliation>Department of Biology, Miami University, 700 E High St, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Institute for the Environment and Sustainability, Miami University, 250 S. Patterson Ave, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koziol, Liz" sort="Koziol, Liz" uniqKey="Koziol L" first="Liz" last="Koziol">Liz Koziol</name>
<affiliation>
<nlm:affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bever, James D" sort="Bever, James D" uniqKey="Bever J" first="James D" last="Bever">James D. Bever</name>
<affiliation>
<nlm:affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (MeSH)</term>
<term>Plants (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31989319</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>192</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.</ArticleTitle>
<Pagination>
<MedlinePgn>735-744</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-020-04598-9</ELocationID>
<Abstract>
<AbstractText>Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bauer</LastName>
<ForeName>Jonathan T</ForeName>
<Initials>JT</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6814-5842</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Miami University, 700 E High St, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for the Environment and Sustainability, Miami University, 250 S. Patterson Ave, Oxford, OH, 45056, USA. bauerjt@miamioh.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koziol</LastName>
<ForeName>Liz</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bever</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Kansas Biological Survey, 2101 Constant Avenue, Lawrence, KS, 66047, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2016-67012-24680</GrantID>
<Agency>National Institute of Food and Agriculture</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>RC-2330</GrantID>
<Agency>Strategic Environmental Research and Development Program</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>1556664</GrantID>
<Agency>Directorate for Biological Sciences</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>1656006</GrantID>
<Agency>Directorate for Biological Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Inoculation</Keyword>
<Keyword MajorTopicYN="N">Local adaptation</Keyword>
<Keyword MajorTopicYN="N">Tallgrass prairie</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31989319</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-020-04598-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-020-04598-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Sep;88(9):1650-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 31;325(5940):573-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2015 Jul;96(7):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2017 Dec 21;10(1):plx073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29383232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1998 Dec;85(12):1732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2093-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2017 Aug;98(8):2111-2119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28500779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Dec;170(4):1089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Oct;137(2):245-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Sep;16(9):1195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23848550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2016 Jun 10;16(1):122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27287440</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000182 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000182 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31989319
   |texte=   Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31989319" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020