Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.

Identifieur interne : 000181 ( Main/Corpus ); précédent : 000180; suivant : 000182

Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.

Auteurs : Emiko K. Stuart ; Krista L. Plett

Source :

RBID : pubmed:31993064

Abstract

Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.

DOI: 10.3389/fpls.2019.01658
PubMed: 31993064
PubMed Central: PMC6971170

Links to Exploration step

pubmed:31993064

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.</title>
<author>
<name sortKey="Stuart, Emiko K" sort="Stuart, Emiko K" uniqKey="Stuart E" first="Emiko K" last="Stuart">Emiko K. Stuart</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31993064</idno>
<idno type="pmid">31993064</idno>
<idno type="doi">10.3389/fpls.2019.01658</idno>
<idno type="pmc">PMC6971170</idno>
<idno type="wicri:Area/Main/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.</title>
<author>
<name sortKey="Stuart, Emiko K" sort="Stuart, Emiko K" uniqKey="Stuart E" first="Emiko K" last="Stuart">Emiko K. Stuart</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31993064</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.</ArticleTitle>
<Pagination>
<MedlinePgn>1658</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01658</ELocationID>
<Abstract>
<AbstractText>Symbiosis with ectomycorrhizal (ECM) fungi is an advantageous partnership for trees in nutrient-limited environments. Ectomycorrhizal fungi colonize the roots of their hosts and improve their access to nutrients, usually nitrogen (N) and, in exchange, trees deliver a significant portion of their photosynthetic carbon (C) to the fungi. This nutrient exchange affects key soil processes and nutrient cycling, as well as plant health, and is therefore central to forest ecosystem functioning. Due to their ecological importance, there is a need to more accurately understand ECM fungal mediated C and N movement within forest ecosystems such that we can better model and predict their role in soil processes both now and under future climate scenarios. There are a number of hurdles that we must overcome, however, before this is achievable such as understanding how the evolutionary history of ECM fungi and their inter- and intra- species variability affect their function. Further, there is currently no generally accepted universal mechanism that appears to govern the flux of nutrients between fungal and plant partners. Here, we consider the current state of knowledge on N acquisition and transport by ECM fungi and how C and N exchange may be related or affected by environmental conditions such as N availability. We emphasize the role that modern genomic analysis, molecular biology techniques and more comprehensive and standardized experimental designs may have in bringing cohesion to the numerous ecological studies in this area and assist us in better understanding this important symbiosis. These approaches will help to build unified models of nutrient exchange and develop diagnostic tools to study these fungi at various scales and environments.</AbstractText>
<CopyrightInformation>Copyright © 2020 Stuart and Plett.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stuart</LastName>
<ForeName>Emiko K</ForeName>
<Initials>EK</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Krista L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">carbon cycle</Keyword>
<Keyword MajorTopicYN="N">carbon sequestration</Keyword>
<Keyword MajorTopicYN="N">ecosystem modelling</Keyword>
<Keyword MajorTopicYN="N">mutualism</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">nutrition</Keyword>
<Keyword MajorTopicYN="N">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31993064</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01658</ArticleId>
<ArticleId IdType="pmc">PMC6971170</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1382-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jun;190(4):927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21352231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jun;11(6):263-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Sep;16(9):787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1452-1465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27748949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Jun;36(1):22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2004 Aug;79(3):473-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 25;468(7323):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2016 Aug;19(8):937-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27335203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 23;505(7484):543-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2013 Dec;173(4):1439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23912260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25800616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Apr;222(1):556-564</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30299541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Jul 27;4:e2270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27547573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):343-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan;217(1):68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29193221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jan;15(1):65-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1440-1451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27678253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Oct;18(8):413-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Dec;3(12):1387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24030593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Dec 18;82(5):1391-1400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26682855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Aug;13(4):217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 May;14(5):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11009-11011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Oct;24(10):4544-4553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30051940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jul;17(7):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(2):411-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Jul;11(7):1878-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19397683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(1):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25982949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2019 Jan;165(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29704246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 May;194(3):614-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Aug;4(15):3015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25247059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1047-1058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29888395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(4):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jan;12(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Dec;14(12):760-773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(2):515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 07;7:12662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):261-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25338146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Sep;87(9):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25524234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;722:249-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21590427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2002 Apr;42(2):352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2003 Jun;43(3):199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Sep 26;8:1874</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29018433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jul;187(2):485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Nov;24(8):645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24756632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):657-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24824576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jan 13;335(6065):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Aug;20(8):1043-1053</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28669138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(2):433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26207269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1971 Sep 10;233(5315):133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16063238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Nov;23(8):597-625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Dec;11(12):2666-2676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28731478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Dec;18(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Jan;34(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27834665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Oct;162(4 Suppl):S40-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14583856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(1):335-343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29297591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Sep 21;505(3):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2011 May 13;5:70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jul 1;353(6294):72-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27365447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jul;223(1):33-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30636276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1705-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20673286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Oct;22(7):515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Oct;7(10):2010-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23788332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Feb;51(2):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2013 Sep;41(3):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jun;14(6):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22469289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1423-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25377589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2016 Mar;97(3):671-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2010 Aug;2(4):541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24787049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2019 Mar;29(2):97-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30617861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 28;407(6803):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029000</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31993064
   |texte=   Digging Deeper: In Search of the Mechanisms of Carbon and Nitrogen Exchange in Ectomycorrhizal Symbioses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31993064" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020