Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.

Identifieur interne : 000135 ( Main/Corpus ); précédent : 000134; suivant : 000136

Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.

Auteurs : X. Wang ; T. Ding ; Y. Li ; Y. Guo ; Y. Li ; T. Duan

Source :

RBID : pubmed:32215998

English descriptors

Abstract

AIMS

This study was designed to evaluate the biocontrol of the arbuscular mycorrhizal fungus (AMF) Funnelliformis mosseae and the rhizobium Sinorhizobium medicae on alfalfa (Medicago sativa) wilt caused by Fusarium oxysporum, a severe soil-borne fungal pathogen.

METHODS AND RESULTS

The effects of co-inoculation of F. mosseae and S. medicae on alfalfa growth, nitrogen, phosphorus uptake and wilt caused by F. oxysporum were tested. Plant defence-related chemicals were measured to reveal the biochemical mechanism by which alfalfa responds to pathogen infection and how it is regulated by AMF and rhizobium. Pathogen infection caused typical yellowing of alfalfa leaflets and significantly reduced plant AMF colonization. AMF or rhizobium alone and the co-inoculation reduced the plant disease index by 83·2, 48·4 and 81·8% respectively. Inoculation with AMF or rhizobium alone increased the dry weight of alfalfa by more than 13 and 3 times respectively; it also increased plant chlorophyll content by 65·6 and 16·6% respectively. Co-inoculation of AMF and rhizobium induced the plant to accumulate more disease-related antioxidant enzymes, plant hydrolase and plant hormones, such as superoxide dismutase, β-1,3-glucanase, chitinase, and phenylalanine ammonialyase, abscisic acid, ethylene and H

CONCLUSIONS

Co-inoculation with F. mosseae and S. medicae offered complementarily improved alfalfa nutrient uptake and growth, which increased plant health. The co-inoculation of AMF and rhizobium regulated plant physiological and biochemical processes and induced plants to produce defence-related compounds, thus decreasing the severity of disease. The simultaneous application of F. mosseae and S. medicae is a potential biocontrol strategy to increase the systemic defence responses of alfalfa to Fusarium wilt.

SIGNIFICANCE AND IMPACT OF THE STUDY

This research showed that complex plant-pathogen interactions are affected by rhizobium and AMF, providing insight into plant-microbiome interactions in the rhizosphere as well as the application of the microbiome in agriculture production.


DOI: 10.1111/jam.14645
PubMed: 32215998

Links to Exploration step

pubmed:32215998

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.</title>
<author>
<name sortKey="Wang, X" sort="Wang, X" uniqKey="Wang X" first="X" last="Wang">X. Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, T" sort="Ding, T" uniqKey="Ding T" first="T" last="Ding">T. Ding</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Y" sort="Guo, Y" uniqKey="Guo Y" first="Y" last="Guo">Y. Guo</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, T" sort="Duan, T" uniqKey="Duan T" first="T" last="Duan">T. Duan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32215998</idno>
<idno type="pmid">32215998</idno>
<idno type="doi">10.1111/jam.14645</idno>
<idno type="wicri:Area/Main/Corpus">000135</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000135</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.</title>
<author>
<name sortKey="Wang, X" sort="Wang, X" uniqKey="Wang X" first="X" last="Wang">X. Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, T" sort="Ding, T" uniqKey="Ding T" first="T" last="Ding">T. Ding</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Y" sort="Guo, Y" uniqKey="Guo Y" first="Y" last="Guo">Y. Guo</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duan, T" sort="Duan, T" uniqKey="Duan T" first="T" last="Duan">T. Duan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of applied microbiology</title>
<idno type="eISSN">1365-2672</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fusarium (pathogenicity)</term>
<term>Medicago sativa (growth & development)</term>
<term>Medicago sativa (metabolism)</term>
<term>Medicago sativa (microbiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nutrients (metabolism)</term>
<term>Pest Control, Biological (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Diseases (prevention & control)</term>
<term>Rhizosphere (MeSH)</term>
<term>Sinorhizobium (physiology)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Medicago sativa</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Medicago sativa</term>
<term>Nutrients</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago sativa</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Sinorhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Pest Control, Biological</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>This study was designed to evaluate the biocontrol of the arbuscular mycorrhizal fungus (AMF) Funnelliformis mosseae and the rhizobium Sinorhizobium medicae on alfalfa (Medicago sativa) wilt caused by Fusarium oxysporum, a severe soil-borne fungal pathogen.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND RESULTS</b>
</p>
<p>The effects of co-inoculation of F. mosseae and S. medicae on alfalfa growth, nitrogen, phosphorus uptake and wilt caused by F. oxysporum were tested. Plant defence-related chemicals were measured to reveal the biochemical mechanism by which alfalfa responds to pathogen infection and how it is regulated by AMF and rhizobium. Pathogen infection caused typical yellowing of alfalfa leaflets and significantly reduced plant AMF colonization. AMF or rhizobium alone and the co-inoculation reduced the plant disease index by 83·2, 48·4 and 81·8% respectively. Inoculation with AMF or rhizobium alone increased the dry weight of alfalfa by more than 13 and 3 times respectively; it also increased plant chlorophyll content by 65·6 and 16·6% respectively. Co-inoculation of AMF and rhizobium induced the plant to accumulate more disease-related antioxidant enzymes, plant hydrolase and plant hormones, such as superoxide dismutase, β-1,3-glucanase, chitinase, and phenylalanine ammonialyase, abscisic acid, ethylene and H</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Co-inoculation with F. mosseae and S. medicae offered complementarily improved alfalfa nutrient uptake and growth, which increased plant health. The co-inoculation of AMF and rhizobium regulated plant physiological and biochemical processes and induced plants to produce defence-related compounds, thus decreasing the severity of disease. The simultaneous application of F. mosseae and S. medicae is a potential biocontrol strategy to increase the systemic defence responses of alfalfa to Fusarium wilt.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE AND IMPACT OF THE STUDY</b>
</p>
<p>This research showed that complex plant-pathogen interactions are affected by rhizobium and AMF, providing insight into plant-microbiome interactions in the rhizosphere as well as the application of the microbiome in agriculture production.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32215998</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2672</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>129</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of applied microbiology</Title>
<ISOAbbreviation>J Appl Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.</ArticleTitle>
<Pagination>
<MedlinePgn>665-679</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/jam.14645</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">This study was designed to evaluate the biocontrol of the arbuscular mycorrhizal fungus (AMF) Funnelliformis mosseae and the rhizobium Sinorhizobium medicae on alfalfa (Medicago sativa) wilt caused by Fusarium oxysporum, a severe soil-borne fungal pathogen.</AbstractText>
<AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">The effects of co-inoculation of F. mosseae and S. medicae on alfalfa growth, nitrogen, phosphorus uptake and wilt caused by F. oxysporum were tested. Plant defence-related chemicals were measured to reveal the biochemical mechanism by which alfalfa responds to pathogen infection and how it is regulated by AMF and rhizobium. Pathogen infection caused typical yellowing of alfalfa leaflets and significantly reduced plant AMF colonization. AMF or rhizobium alone and the co-inoculation reduced the plant disease index by 83·2, 48·4 and 81·8% respectively. Inoculation with AMF or rhizobium alone increased the dry weight of alfalfa by more than 13 and 3 times respectively; it also increased plant chlorophyll content by 65·6 and 16·6% respectively. Co-inoculation of AMF and rhizobium induced the plant to accumulate more disease-related antioxidant enzymes, plant hydrolase and plant hormones, such as superoxide dismutase, β-1,3-glucanase, chitinase, and phenylalanine ammonialyase, abscisic acid, ethylene and H
<sub>2</sub>
O
<sub>2</sub>
, under pathogen stress.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Co-inoculation with F. mosseae and S. medicae offered complementarily improved alfalfa nutrient uptake and growth, which increased plant health. The co-inoculation of AMF and rhizobium regulated plant physiological and biochemical processes and induced plants to produce defence-related compounds, thus decreasing the severity of disease. The simultaneous application of F. mosseae and S. medicae is a potential biocontrol strategy to increase the systemic defence responses of alfalfa to Fusarium wilt.</AbstractText>
<AbstractText Label="SIGNIFICANCE AND IMPACT OF THE STUDY" NlmCategory="CONCLUSIONS">This research showed that complex plant-pathogen interactions are affected by rhizobium and AMF, providing insight into plant-microbiome interactions in the rhizosphere as well as the application of the microbiome in agriculture production.</AbstractText>
<CopyrightInformation>© 2020 The Society for Applied Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>X</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4599-9562</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4871-1421</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9518-4073</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31100368</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CARS-22 Green Manure</GrantID>
<Agency>Earmarked Fund for China Agriculture Research System</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Massey University</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Appl Microbiol</MedlineTA>
<NlmUniqueID>9706280</NlmUniqueID>
<ISSNLinking>1364-5072</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000455" MajorTopicYN="N">Medicago sativa</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010572" MajorTopicYN="N">Pest Control, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020579" MajorTopicYN="N">Sinorhizobium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">enzymes</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">plant disease</Keyword>
<Keyword MajorTopicYN="N">rhizosphere</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32215998</ArticleId>
<ArticleId IdType="doi">10.1111/jam.14645</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Akbari-Vafaii, A., Ketabchi, S. and Moradshahi, A. (2014) Effect of methyl jasmonate (MeJA) on biochemical responses of wheat seedlings infected by Fusarium culmorum. Arch Phytopath Plant Prot 47, 1893-1904.</Citation>
</Reference>
<Reference>
<Citation>Antoun, H., Bordeleau, L.M. and Gagnon, C. (1978) Antagonisme entre Rhizobium meliloti et Fusarium oxsporum en relation. Can J Plant Sci 58, 75-78.</Citation>
</Reference>
<Reference>
<Citation>Ao, S., Bucciarelli, B., Dornbusch, M.R., Miller, S.S. and Samac, D. (2018) First report of alfalfa (Medicago sativa L.) seed rot, seedling root rot, and damping-off caused by Pythium spp. in Sudanese soil. Plant Dis 102, 1043.</Citation>
</Reference>
<Reference>
<Citation>Borrero, C., Trillas, M.I., Ordovás, J., Tello, J.C. and Avilés, M. (2004) Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology 94, 1094-1101.</Citation>
</Reference>
<Reference>
<Citation>Cattelan, A.J., Hartel, P.G. and Fuhrmann, J.J. (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J63, 1670-1680.</Citation>
</Reference>
<Reference>
<Citation>Chakraborty, U. and Purkayastha, R.P. (1984) Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30, 285-289.</Citation>
</Reference>
<Reference>
<Citation>Chandra, S., Choure, K., Dubey, R.C. and Maheshwari, D.K. (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38, 124-130.</Citation>
</Reference>
<Reference>
<Citation>Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H.P. and Krajinski, F. (2004) Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55, 109-120.</Citation>
</Reference>
<Reference>
<Citation>Das, K., Prasanna, R. and Saxena, A.K. (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol (Praha) 62, 1-11.</Citation>
</Reference>
<Reference>
<Citation>Delledonne, M., Xia, Y., Dixon, R.A. and Lamb, C. (2001) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588.</Citation>
</Reference>
<Reference>
<Citation>Durner, J. and Klessig, D.F. (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2, 369-374.</Citation>
</Reference>
<Reference>
<Citation>Elango, V., Manjukarunambika, K., Ponmurugan, P. and Marimuthu, S. (2015) Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants. Biol Contr 89, 75-83.</Citation>
</Reference>
<Reference>
<Citation>Feng, Y., Li, X., Wang, W. and Liu, C. (2011) Detection of soil total nitrogen by vis-SWNIR spectroscopy. In Computer and computing technologies in agriculture IV ed. Li, D.L., Liu, Y. and Chen, Y.Y. pp. 184-191. Berlin, Heidelberg: Springer.</Citation>
</Reference>
<Reference>
<Citation>Foley, R.C., Gleason, C.A., Anderson, J.P., Hamann, T. and Singh, K.B. (2013) Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; Evidence of resistance mediated through NADPH oxidases. PLoS ONE 8, https://doi.org/10.1371/journal.pone.0056814</Citation>
</Reference>
<Reference>
<Citation>Fravel, D., Olivain, C. and Alabouvette, C. (2003) Fusarium oxysporum and its biocontrol. New Phytol 157, 493-502.</Citation>
</Reference>
<Reference>
<Citation>Fridovich, I. (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247, 1-11.</Citation>
</Reference>
<Reference>
<Citation>Fu, X., Wu, X., Zhou, X., Liu, S., Shen, Y. and Wu, F. (2015) Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahlia. Front Plant Sci 6, 726.</Citation>
</Reference>
<Reference>
<Citation>Gao, P., Li, Y.D., Guo, Y.E. and Duan, T.Y. (2018) Co-inoculation of an AM fungus and a rhizobium reduce alfalfa Spring black stem and leaf spot occurrence caused by Phoma medicaginis. Crop Pastu Sci 69, 933-943.</Citation>
</Reference>
<Reference>
<Citation>Garcíapineda, E., Benezerbenezer, M., Gutiérrezsegundo, A., Rangelsánchez, G., Arreolacortés, A. and Castromercado, E. (2010) Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi Rands. Plant Soil 331, 45-56.</Citation>
</Reference>
<Reference>
<Citation>Giannopolitis, C.N. and Ries, S.K. (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59, 309.</Citation>
</Reference>
<Reference>
<Citation>Giovannetti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84, 489-500.</Citation>
</Reference>
<Reference>
<Citation>Gruber, N. and Galloway, J.N. (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451, 293-296.</Citation>
</Reference>
<Reference>
<Citation>Gupta, K.J., Mur, L.A. and Brotman, Y. (2014) Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant Microbe Interact 27, 307-314.</Citation>
</Reference>
<Reference>
<Citation>Heath, R.L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125, 189-198.</Citation>
</Reference>
<Reference>
<Citation>Hwang, S.F., Chang, K.F. and Chakravarty, P. (1992) Effects of vesicular-arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium wilts of alfalfa. Plant Dis 76, 239.</Citation>
</Reference>
<Reference>
<Citation>Jie, W., Bai, L., Yu, W. and Cai, B. (2015) Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period. Biocontr Sci Technol 25, 1036-1051.</Citation>
</Reference>
<Reference>
<Citation>Kissoudis, C. (2016) Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress. Front Plant Sci 7, 2009.</Citation>
</Reference>
<Reference>
<Citation>Krishnamurthy, K.V. (1999) Methods in Cell Wall Cytochemistry. Boca Raton, FL: CRC Press.</Citation>
</Reference>
<Reference>
<Citation>Kulikowskagulewska, H., Galoch, E.B. and Kopcewicz, J. (1998) ABA in photoperiodic induction of Pharbitis nil. Acta Soc Bot Pol 67, 59-63.</Citation>
</Reference>
<Reference>
<Citation>Kumar, H., Dubey, R.C. and Maheshwari, D.K. (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonellafoenum graecum L.). Crop Prot 30, 1396-1403.</Citation>
</Reference>
<Reference>
<Citation>La, M.J., Unda, F., Douglas, C.J., Mansfield, S.D. and Hamelin, R. (2017) Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. Tree Physiol 38, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Larimer, A.L., Clay, K. and Bever, J.D. (2014) Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95, 1045-1054.</Citation>
</Reference>
<Reference>
<Citation>Lee, H.J., Park, K.H., Shim, J.H., Park, R.D., Kim, Y.W., Cho, J.Y., Hwangbo, H., Kim, Y.C. et al. (2005) Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J Microb Biotech 15, 1073-1079.</Citation>
</Reference>
<Reference>
<Citation>Li, H.S., Sun, Q., Zhao, S.J. and Zhang, W.H. (2000) Principle and Techniques of Botanic, Chemical and Physiological Experiments (1st edn). Beijing: SeniorEducation Press.</Citation>
</Reference>
<Reference>
<Citation>Li, F., Guo, Y., Christensen, M., Gao, P., Li, Y. and Duan, T. (2018). An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28, 159-169.</Citation>
</Reference>
<Reference>
<Citation>Li, Y.G., Meng, L., Gong, L., Zhao, T.X., Ji, P., Zhang, Q.F. and Cui, G.W. (2019) Occurrence of Bipolaris root rot caused by Bipolaris sorokiniana on Alfalfa in China. Plant Dis 103, 2691-2691.</Citation>
</Reference>
<Reference>
<Citation>Marschner, H. and Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89-102.</Citation>
</Reference>
<Reference>
<Citation>Matias, S.R., Pagano, M.C., Muzzi, F.C., Oliveira, C.A., Carneiro, A.A., Horta, S.N. and Scottia, M.R. (2009) Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. Eur J Soil Biol 45, 259-266.</Citation>
</Reference>
<Reference>
<Citation>Mikaliūnienė, J., Lemežienė, N., Danytė, V. and Supronienė, S. (2015) Evaluation of red clover (Trifolium pratense L.) resistance to Sclerotinia crown and root rot (Sclerotinia trifoliorum) in the laboratory and field conditions. Zemdirb Agric 102, 167-176.</Citation>
</Reference>
<Reference>
<Citation>Mukherjee, S.P. and Choudhuri, M.A. (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58, 166-170.</Citation>
</Reference>
<Reference>
<Citation>Nelson, P.E., Toussoun, T.A. and Marasas, W.F.O. (1983) Fusarium spp. In An Illustrated Manual for Identification ed. Booth, C. University Park: The Pennsylvania State University Press.</Citation>
</Reference>
<Reference>
<Citation>Noreen, R., Ali, S.A., Hasan, K.A., Sultana, V., Ara, J. and Ehteshamul-Haque, S. (2015) Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mung bean. Crop Prot 75, 18-24.</Citation>
</Reference>
<Reference>
<Citation>Phillips, J.M. and Hayman, D.S. (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans British Mycol Soc 55, 158, IN16-61, IN18.</Citation>
</Reference>
<Reference>
<Citation>Ramírezsuero, M., Khanshour, A., Martinez, Y. and Rickauer, M. (2010) A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Euro J Plant Pathol 126, 517-530.</Citation>
</Reference>
<Reference>
<Citation>Reimann, S., Hauschild, R., Hildebrandt, U. and Sikora, R.A. (2008) Interrelationships between rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyneincognita on tomato. J Plant Dis Protect 115, 108-113.</Citation>
</Reference>
<Reference>
<Citation>Richard, C., Willemot, C., Michaud, R., Berniercardou, M. and Gagnon, C. (1982) Low-temperature interactions in Fusarium wilt and root rot of alfalfa. Phytopathology 72, 293-297.</Citation>
</Reference>
<Reference>
<Citation>Rolke, Y., Liu, S., Quidde, T., Williamson, B., Schouten, A., Weltring, K.M., Siewers, V., Tenberge, K.B. et al. (2004) Functional analysis of H(2)O(2)-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5, 17-27.</Citation>
</Reference>
<Reference>
<Citation>Salzer, P., Corbière, H. and Boller, T. (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208, 319-325.</Citation>
</Reference>
<Reference>
<Citation>Schwendemann, A.B., Decombeix, A.L., Taylor, T.N., Taylor, E.L. and Krings, M. (2011) Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. Proc Natl Acad Sci USA 108, 13630-13634.</Citation>
</Reference>
<Reference>
<Citation>Sharif, T., Khalil, S. and Ahmad, S. (2003) Effect of Rhizobium sp. on growth of pathogenic fungi under in vitro conditions. Pak J Biol Sci 6, 1597-1599.</Citation>
</Reference>
<Reference>
<Citation>Singh, P.K., Mishra, M. and Vyas, D. (2010) Effect of root exudates of mycorrhizal tomato plants on microconidia germination of Fusarium oxysporum f. sp. lycopersici. Arch Phytopathol Plant Prot 43, 1495-1503.</Citation>
</Reference>
<Reference>
<Citation>Singh, M., Vyas, D. and Singh, P.K. (2014) Interaction of soil microbes with mycorrhizal fungi in tomato. Arch Phytopathol Plant Prot 47, 737-743.</Citation>
</Reference>
<Reference>
<Citation>Smith, S.E. and Read, D.F. (2008) Mycorrhizal Symbiosis (3rd edn). London, UK: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Sorokan, A.V., Burhanova, G.F. and Maksimov, I.V. (2018) Anionic peroxidase-mediated oxidative burst requirement for jasmonic acid-dependent Solanum tuberosum defence against Phytophthora infestans. Plant Pathol 67, 349-357.</Citation>
</Reference>
<Reference>
<Citation>Tajini, F., Trabelsi, M. and Drevon, J.J. (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L). Saudi J Biol Sci 19, 157-163.</Citation>
</Reference>
<Reference>
<Citation>Trudel, J. and Asselin, A. (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178, 362-366.</Citation>
</Reference>
<Reference>
<Citation>Uddling, J., Gelangalfredsson, J., Piikki, K. and Pleijel, H. (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91, 37-46.</Citation>
</Reference>
<Reference>
<Citation>USDA, Soil Survey Staff (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (2nd edn). Agriculture Handbook No. 436. Washington: Gov Printing Office.</Citation>
</Reference>
<Reference>
<Citation>Wadhwa, N. and Joshi, U.N. (2016) Zinc supplementation induces resistance against root-rot in guar [Cyamopsis tetragonoloba (L.) Taub] seedlings. Australas Plant Path 45, 1-7.</Citation>
</Reference>
<Reference>
<Citation>Wen, Z.H., Duan, T.Y., Christensen, M.J. and Nan, Z.B. (2015) Microdochium tabacinum, confirmed as a pathogen of alfalfa in Gansu Province, China. Plant Dis 99, 87-92.</Citation>
</Reference>
<Reference>
<Citation>Wiggins, B.E. and Kinkel, L.L. (2005) Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes. Plant Soil 268, 271-283.</Citation>
</Reference>
<Reference>
<Citation>Yamamoto, A., Nakamura, T., Adu-Gyamfi, J.J. and Saigusa, M. (2002) Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction extraction method and by chlorophyll meter (SPAD-502). J Plant Nutr 25, 2295-2301.</Citation>
</Reference>
<Reference>
<Citation>Yang, Y., Shah, J. and Klessig, D.F. (1997) Signal perception and transduction in plant defense responses. Genes Dev 11, 1621-1639.</Citation>
</Reference>
<Reference>
<Citation>Yuan, H.M., Liu, W.C. and Lu, Y.T. (2017) Catalase2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 21, 143-155.</Citation>
</Reference>
<Reference>
<Citation>Zhao, M.Q., Chen, X., Shi, Y., Zhou, Q.L. and Lu, C.Y. (2009) Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment. Bull Environ Contam Toxicol 82, 85-89.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000135 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000135 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32215998
   |texte=   Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32215998" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020