Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Orchid conservation: from theory to practice.

Identifieur interne : 000100 ( Main/Corpus ); précédent : 000099; suivant : 000101

Orchid conservation: from theory to practice.

Auteurs : Ryan D. Phillips ; Noushka Reiter ; Rod Peakall

Source :

RBID : pubmed:32407498

English descriptors

Abstract

BACKGROUND

Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation.

SCOPE

We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes.

CONCLUSIONS

Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.


DOI: 10.1093/aob/mcaa093
PubMed: 32407498
PubMed Central: PMC7424752

Links to Exploration step

pubmed:32407498

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Orchid conservation: from theory to practice.</title>
<author>
<name sortKey="Phillips, Ryan D" sort="Phillips, Ryan D" uniqKey="Phillips R" first="Ryan D" last="Phillips">Ryan D. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reiter, Noushka" sort="Reiter, Noushka" uniqKey="Reiter N" first="Noushka" last="Reiter">Noushka Reiter</name>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peakall, Rod" sort="Peakall, Rod" uniqKey="Peakall R" first="Rod" last="Peakall">Rod Peakall</name>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32407498</idno>
<idno type="pmid">32407498</idno>
<idno type="doi">10.1093/aob/mcaa093</idno>
<idno type="pmc">PMC7424752</idno>
<idno type="wicri:Area/Main/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Orchid conservation: from theory to practice.</title>
<author>
<name sortKey="Phillips, Ryan D" sort="Phillips, Ryan D" uniqKey="Phillips R" first="Ryan D" last="Phillips">Ryan D. Phillips</name>
<affiliation>
<nlm:affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reiter, Noushka" sort="Reiter, Noushka" uniqKey="Reiter N" first="Noushka" last="Reiter">Noushka Reiter</name>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peakall, Rod" sort="Peakall, Rod" uniqKey="Peakall R" first="Rod" last="Peakall">Rod Peakall</name>
<affiliation>
<nlm:affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Germination (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Orchidaceae (genetics)</term>
<term>Pollination (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Orchidaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Germination</term>
<term>Mycorrhizae</term>
<term>Pollination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SCOPE</b>
</p>
<p>We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32407498</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>126</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Orchid conservation: from theory to practice.</ArticleTitle>
<Pagination>
<MedlinePgn>345-362</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcaa093</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation.</AbstractText>
<AbstractText Label="SCOPE">We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes.</AbstractText>
<AbstractText Label="CONCLUSIONS">Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Ryan D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reiter</LastName>
<ForeName>Noushka</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peakall</LastName>
<ForeName>Rod</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054817" MajorTopicYN="N">Pollination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Orchid</Keyword>
<Keyword MajorTopicYN="Y">conservation</Keyword>
<Keyword MajorTopicYN="Y">conservation translocations</Keyword>
<Keyword MajorTopicYN="Y">demography</Keyword>
<Keyword MajorTopicYN="Y">genetics</Keyword>
<Keyword MajorTopicYN="Y">mycorrhiza</Keyword>
<Keyword MajorTopicYN="Y">pollination</Keyword>
<Keyword MajorTopicYN="Y">reintroduction</Keyword>
<Keyword MajorTopicYN="Y">restoration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32407498</ArticleId>
<ArticleId IdType="pii">5837070</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcaa093</ArticleId>
<ArticleId IdType="pmc">PMC7424752</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2008;180(1):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2000 Feb 7;267(1440):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10714875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bot Stud. 2017 Dec;58(1):33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28779349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2009;54:425-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25423910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jul;88(7):1759-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1998 Mar;85(3):402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2000 Jul;15(7):278-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Oct;104(5):995-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(1):365-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Oct;24(10):564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2016 Oct;29(10):2070-2082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27369842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Aug;19(15):3226-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2015 Mar;28(3):601-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25619237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5098-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22765763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Aug;17(16):3707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2015 Jan 06;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25564514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Sep;13(9):2655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2006 May;81(2):219-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2017 Sep;30(9):1674-1691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28714217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2013 Oct;26(10):2197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23981167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(12):e4010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Sep;219(4):1207-1215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2008;53:191-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2019 Sep;21(5):935-941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30907053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 May;24(5):248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jul 11;2:16107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27398907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jan;16(1):4-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(1):10-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27891646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 May;26(5):216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Jan;113(2):341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24052555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Jan;113(2):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24418954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Sep;104(4):757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2020 Aug;25(8):779-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32386827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 23;333(6050):1742-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21940893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Jan;23(1):20-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(2):405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2015 Aug;28(8):1526-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26079670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 May;89(5):1375-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18543630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2019 May;132(3):383-394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31006042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Jun;89(6):1583-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18589523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2007 Apr;21(2):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17391179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1993 Dec.;142(6):911-927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29519140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Mar;21(6):1511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22272942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Aug;104(3):543-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Feb;94(2):184-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):6-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24028679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2019 Mar;29(2):159-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30707331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Feb;14(2):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15660950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Aug;203(3):939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24697806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Apr;18(4):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25711515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Mar;111(3):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23275632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1996 Jun;11(6):255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8455-8458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28470835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(3):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26105186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Oct;86(10):1406-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 May;79(3):361-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Jun;68(6):1561-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24527666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Nov;21(21):5208-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Feb;95(2):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Mar;10(2):220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2009 Aug;23(4):911-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2011 Jun;25(3):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Apr;100(4):764-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23545217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Dec;50(6):2207-2220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Jun;25(6):345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Jul;132(2):221-230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Feb;119(3):379-393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28025292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Foreign Med Chir Rev. 1862 Oct;30(60):312-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30163543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2020 Jun 24;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32574356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24237204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Apr;89(4):502-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18060434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Dec;94(12):1944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2011 Feb;86(1):33-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Mar;113(4):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1523-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2017 Jan;104(1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28062407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Oct;110(5):977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23002267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2011 Sep;65(9):2606-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Oct;66(10):3035-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23025596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jul;207(1):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25704464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2009 Apr 23;5(2):282-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Dec 1;24(23):2845-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25454786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26876007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2018 Nov 30;122(6):947-959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1989 Nov 6;325(1228):469-76; discussion 476-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2574887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2012 May;93(5):1036-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22764490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 8;427(6970):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2018 May;21(5):724-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29575384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Mar;26(6):1687-1701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28100022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Mar;88(3):419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11250819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2018 Jan;2(1):16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jan;14(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(1):11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2011 Feb 22;278(1705):554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Aug;32:37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27368084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Sep;19(18):4086-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20735736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bot Stud. 2018 Jun 5;59(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29872972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Oct;113(Pt 10):1097-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 25;331(6020):1068-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Feb;16(3):463-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Nov 15;284(1866):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2019 Oct;29(5):541-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31312918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):237-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 17;7(1):5613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28717170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1998 May;85(5):675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Nov 10;120(5):625-632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28961783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Jan;91(1):52-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2020 Jul;22(4):555-561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32181557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(3):391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26271118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 21;313(5785):351-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16857940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):448-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Apr;101(4):500-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306966</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32407498
   |texte=   Orchid conservation: from theory to practice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32407498" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020