Serveur d'exploration sur les protéines de liaison chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure of Ddi2, a highly inducible detoxifying metalloenzyme from Saccharomyces cerevisiae.

Identifieur interne : 000029 ( Main/Corpus ); précédent : 000028; suivant : 000030

Structure of Ddi2, a highly inducible detoxifying metalloenzyme from Saccharomyces cerevisiae.

Auteurs : Jia Li ; Yunhua Jia ; Aiyang Lin ; Michelle Hanna ; Linda Chelico ; Wei Xiao ; Stanley A. Moore

Source :

RBID : pubmed:31152065

English descriptors

Abstract

Cyanamide (H2N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that Saccharomyces cerevisiae exposed to cyanamide resulted in strong induction of DDI2 gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn2+ ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of ddi2Δ ddi3Δ to cyanamide was not rescued by plasmids harboring ddi2-H137N or ddi2-TI57V variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.

DOI: 10.1074/jbc.RA118.006394
PubMed: 31152065
PubMed Central: PMC6615675

Links to Exploration step

pubmed:31152065

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure of Ddi2, a highly inducible detoxifying metalloenzyme from
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Li, Jia" sort="Li, Jia" uniqKey="Li J" first="Jia" last="Li">Jia Li</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Yunhua" sort="Jia, Yunhua" uniqKey="Jia Y" first="Yunhua" last="Jia">Yunhua Jia</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Aiyang" sort="Lin, Aiyang" uniqKey="Lin A" first="Aiyang" last="Lin">Aiyang Lin</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanna, Michelle" sort="Hanna, Michelle" uniqKey="Hanna M" first="Michelle" last="Hanna">Michelle Hanna</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chelico, Linda" sort="Chelico, Linda" uniqKey="Chelico L" first="Linda" last="Chelico">Linda Chelico</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Wei" sort="Xiao, Wei" uniqKey="Xiao W" first="Wei" last="Xiao">Wei Xiao</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and wei.xiao@usask.ca.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Stanley A" sort="Moore, Stanley A" uniqKey="Moore S" first="Stanley A" last="Moore">Stanley A. Moore</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and stan.moore@usask.ca.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31152065</idno>
<idno type="pmid">31152065</idno>
<idno type="doi">10.1074/jbc.RA118.006394</idno>
<idno type="pmc">PMC6615675</idno>
<idno type="wicri:Area/Main/Corpus">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000029</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure of Ddi2, a highly inducible detoxifying metalloenzyme from
<i>Saccharomyces cerevisiae</i>
.</title>
<author>
<name sortKey="Li, Jia" sort="Li, Jia" uniqKey="Li J" first="Jia" last="Li">Jia Li</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jia, Yunhua" sort="Jia, Yunhua" uniqKey="Jia Y" first="Yunhua" last="Jia">Yunhua Jia</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Aiyang" sort="Lin, Aiyang" uniqKey="Lin A" first="Aiyang" last="Lin">Aiyang Lin</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hanna, Michelle" sort="Hanna, Michelle" uniqKey="Hanna M" first="Michelle" last="Hanna">Michelle Hanna</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chelico, Linda" sort="Chelico, Linda" uniqKey="Chelico L" first="Linda" last="Chelico">Linda Chelico</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Wei" sort="Xiao, Wei" uniqKey="Xiao W" first="Wei" last="Xiao">Wei Xiao</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and wei.xiao@usask.ca.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Moore, Stanley A" sort="Moore, Stanley A" uniqKey="Moore S" first="Stanley A" last="Moore">Stanley A. Moore</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and stan.moore@usask.ca.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cyanamide (chemistry)</term>
<term>Cyanamide (metabolism)</term>
<term>Dimerization (MeSH)</term>
<term>Hydro-Lyases (chemistry)</term>
<term>Hydro-Lyases (genetics)</term>
<term>Hydro-Lyases (metabolism)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Zinc (chemistry)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cyanamide</term>
<term>Hydro-Lyases</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hydro-Lyases</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyanamide</term>
<term>Hydro-Lyases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Dimerization</term>
<term>Inactivation, Metabolic</term>
<term>Kinetics</term>
<term>Molecular Dynamics Simulation</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cyanamide (H
<sub>2</sub>
N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that
<i>Saccharomyces cerevisiae</i>
exposed to cyanamide resulted in strong induction of
<i>DDI2</i>
gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn
<sup>2+</sup>
ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of
<i>ddi2</i>
Δ
<i>ddi3</i>
Δ to cyanamide was not rescued by plasmids harboring
<i>ddi2-H137N</i>
or
<i>ddi2-TI57V</i>
variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31152065</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure of Ddi2, a highly inducible detoxifying metalloenzyme from
<i>Saccharomyces cerevisiae</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>10674-10685</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.006394</ELocationID>
<Abstract>
<AbstractText>Cyanamide (H
<sub>2</sub>
N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that
<i>Saccharomyces cerevisiae</i>
exposed to cyanamide resulted in strong induction of
<i>DDI2</i>
gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn
<sup>2+</sup>
ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of
<i>ddi2</i>
Δ
<i>ddi3</i>
Δ to cyanamide was not rescued by plasmids harboring
<i>ddi2-H137N</i>
or
<i>ddi2-TI57V</i>
variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.</AbstractText>
<CopyrightInformation>© 2019 Li et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Yunhua</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Aiyang</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanna</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chelico</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-4673-8978</Identifier>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and wei.xiao@usask.ca.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Stanley A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and stan.moore@usask.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>5DQV</AccessionNumber>
<AccessionNumber>5DQW</AccessionNumber>
<AccessionNumber>4R8Z</AccessionNumber>
<AccessionNumber>4D08</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP-126155 </GrantID>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>420-04-2</RegistryNumber>
<NameOfSubstance UI="D003484">Cyanamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006836">Hydro-Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003484" MajorTopicYN="N">Cyanamide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006836" MajorTopicYN="N">Hydro-Lyases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">HD domain</Keyword>
<Keyword MajorTopicYN="Y">active site</Keyword>
<Keyword MajorTopicYN="Y">crystallography</Keyword>
<Keyword MajorTopicYN="Y">cyanamide</Keyword>
<Keyword MajorTopicYN="Y">enzyme mechanism</Keyword>
<Keyword MajorTopicYN="Y">enzyme structure</Keyword>
<Keyword MajorTopicYN="Y">hydratase</Keyword>
<Keyword MajorTopicYN="Y">metalloenzyme</Keyword>
<Keyword MajorTopicYN="Y">urea</Keyword>
<Keyword MajorTopicYN="Y">yeast physiology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31152065</ArticleId>
<ArticleId IdType="pii">RA118.006394</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.006394</ArticleId>
<ArticleId IdType="pmc">PMC6615675</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Inorg Chem. 1999 Oct;4(5):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Oct 10;39(40):12391-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Mar;58(Pt 3):494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2002 Dec;12(6):775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Feb;29(2):275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):49-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14646132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W582-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Mar;162(3):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15832682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Nov 15;69(3):466-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17623850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Mar;69(5):1166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18324412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Apr 18;378(1):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 30;283(22):15209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18364358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 16;133(4):601-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 May 15;88(10):4260-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2034671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 06;480(7377):379-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22056990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Jan;91(1):26-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24176013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Med Chem Lett. 2014 Jul 22;5(9):1049-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25221665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2015 Apr;197(8):1525-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Apr 17;290(16):10418-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25694425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 15;290(20):12664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25847245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 May 27;5:10527</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26013398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Commun. 2015 May;10(5):743-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26058148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2016 Jul;195(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27062940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jul 17;8:1233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28769948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1984 Jul 18;122(1):358-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6378202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1996 Jul 12;52(1):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8678898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1998 Jun 15;55(12):2007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MetalBindProtPlantV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000029 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000029 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MetalBindProtPlantV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31152065
   |texte=   Structure of Ddi2, a highly inducible detoxifying metalloenzyme from Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31152065" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MetalBindProtPlantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:03:59 2020. Site generation: Fri Nov 20 11:04:44 2020