Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.

Identifieur interne : 000086 ( PubMed/Corpus ); précédent : 000085; suivant : 000087

How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.

Auteurs : Colin M. Orians ; Robert S. Fritz ; Cris G. Hochwender ; Benedicte R. Albrectsen ; Mary Ellen Czesak

Source :

RBID : pubmed:23475954

English descriptors

Abstract

BACKGROUND AND AIMS

Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.

METHODS

Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), 'selected' and undamaged 'control' trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.

KEY RESULTS

The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora).

CONCLUSIONS

This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.


DOI: 10.1093/aob/mct002
PubMed: 23475954
PubMed Central: PMC3736762

Links to Exploration step

pubmed:23475954

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.</title>
<author>
<name sortKey="Orians, Colin M" sort="Orians, Colin M" uniqKey="Orians C" first="Colin M" last="Orians">Colin M. Orians</name>
<affiliation>
<nlm:affiliation>Department of Biology, Tufts University, Medford, MA 02155, USA. colin.orians@tufts.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Robert S" sort="Fritz, Robert S" uniqKey="Fritz R" first="Robert S" last="Fritz">Robert S. Fritz</name>
</author>
<author>
<name sortKey="Hochwender, Cris G" sort="Hochwender, Cris G" uniqKey="Hochwender C" first="Cris G" last="Hochwender">Cris G. Hochwender</name>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R" last="Albrectsen">Benedicte R. Albrectsen</name>
</author>
<author>
<name sortKey="Czesak, Mary Ellen" sort="Czesak, Mary Ellen" uniqKey="Czesak M" first="Mary Ellen" last="Czesak">Mary Ellen Czesak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23475954</idno>
<idno type="pmid">23475954</idno>
<idno type="doi">10.1093/aob/mct002</idno>
<idno type="pmc">PMC3736762</idno>
<idno type="wicri:Area/PubMed/Corpus">000086</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000086</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.</title>
<author>
<name sortKey="Orians, Colin M" sort="Orians, Colin M" uniqKey="Orians C" first="Colin M" last="Orians">Colin M. Orians</name>
<affiliation>
<nlm:affiliation>Department of Biology, Tufts University, Medford, MA 02155, USA. colin.orians@tufts.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fritz, Robert S" sort="Fritz, Robert S" uniqKey="Fritz R" first="Robert S" last="Fritz">Robert S. Fritz</name>
</author>
<author>
<name sortKey="Hochwender, Cris G" sort="Hochwender, Cris G" uniqKey="Hochwender C" first="Cris G" last="Hochwender">Cris G. Hochwender</name>
</author>
<author>
<name sortKey="Albrectsen, Benedicte R" sort="Albrectsen, Benedicte R" uniqKey="Albrectsen B" first="Benedicte R" last="Albrectsen">Benedicte R. Albrectsen</name>
</author>
<author>
<name sortKey="Czesak, Mary Ellen" sort="Czesak, Mary Ellen" uniqKey="Czesak M" first="Mary Ellen" last="Czesak">Mary Ellen Czesak</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Gastropoda (physiology)</term>
<term>Glycosides (metabolism)</term>
<term>Herbivory (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Salix (physiology)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycosides</term>
<term>Phenols</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gastropoda</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Herbivory</term>
<term>Selection, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), 'selected' and undamaged 'control' trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23475954</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>112</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.</ArticleTitle>
<Pagination>
<MedlinePgn>757-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mct002</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Selective feeding by herbivores, especially at the seedling or juvenile phase, has the potential to change plant traits and ultimately the susceptibility of surviving plants to other enemies. Moreover, since hybridization is important to speciation and can lead to introgression of traits between plant species, differential feeding (herbivore-induced mortality) can influence the expression of resistance traits of hybrids and ultimately determine the consequences of hybridization. While it would be expected that herbivore-induced mortality would lead to greater resistance, there may be trade-offs whereby resistance to one herbivore increases susceptibility to others. The hypothesis was tested that the exotic slug, Arion subfuscus, causes non-random survival of hybrid willows and alters plant: (1) susceptibility to slugs; (2) secondary and nutritional chemistry, and growth; and (3) susceptibility to other phytophages.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Two populations of plants, control and selected, were created by placing trays of juvenile willows in the field and allowing slugs access to only some. When ≤10 individuals/tray remained (approx. 85 % mortality), 'selected' and undamaged 'control' trays were returned to a common area. Traits of these populations were then examined in year 1 and in subsequent years.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">The selected population was less palatable to slugs. Surprisingly, foliar concentrations of putative defence traits (phenolic glycosides and tannins) did not differ between treatments, but the selected population had higher foliar nitrogen and protein, lower carbon to nitrogen ratio and greater above-ground biomass, indicating that vigorously growing plants were inherently more resistant to slugs. Interestingly, selected plants were more susceptible to three phytophages: an indigenous pathogen (Melampsora epitea), a native herbivorous beetle (Chrysomela knabi) and an exotic willow leaf beetle (Plagiodera versicolora).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This exotic slug changed the population structure of F2 hybrid willows in unanticipated ways. Defence expression remained unchanged, while nutritional and growth traits changed. These changes caused plants to be more susceptible to other plant enemies. Other exotic herbivore species are anticipated to have similar direct and indirect effects on native plant populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Orians</LastName>
<ForeName>Colin M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Tufts University, Medford, MA 02155, USA. colin.orians@tufts.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fritz</LastName>
<ForeName>Robert S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hochwender</LastName>
<ForeName>Cris G</ForeName>
<Initials>CG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Albrectsen</LastName>
<ForeName>Benedicte R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Czesak</LastName>
<ForeName>Mary Ellen</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049851" MajorTopicYN="N">Gastropoda</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arion subfuscus</Keyword>
<Keyword MajorTopicYN="N">Exotic species</Keyword>
<Keyword MajorTopicYN="N">Salix</Keyword>
<Keyword MajorTopicYN="N">herbivory</Keyword>
<Keyword MajorTopicYN="N">hybridization</Keyword>
<Keyword MajorTopicYN="N">slug</Keyword>
<Keyword MajorTopicYN="N">trade-offs</Keyword>
<Keyword MajorTopicYN="N">willow</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23475954</ArticleId>
<ArticleId IdType="pii">mct002</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mct002</ArticleId>
<ArticleId IdType="pmc">PMC3736762</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2000 Jan;9(1):9-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2000 Dec;87(12):1749-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Dec;137(4):572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2003 Nov;16(6):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14640403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Dec;32(12):2647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17131187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1991 Jun;57(3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1889741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Jun;103(8):1347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19351683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2010;55:439-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Jun;163(2):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Aug;112(4):671-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1996 Apr;22(4):765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Sep;21(9):1235-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Sep;21(9):1245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Jun;15(6):1795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Feb;105(3):388-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Sep;129(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1992 Feb;46(1):92-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1995 Apr;49(2):317-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Jun;52(3):703-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1997 Aug;51(4):1112-1119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1997 Oct;51(5):1469-1480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 May 3;272(5262):741-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000086 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000086 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23475954
   |texte=   How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23475954" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020