Serveur d'exploration Melampsora (ISTEX)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces

Identifieur interne : 000514 ( Pmc/Curation ); précédent : 000513; suivant : 000515

Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces

Auteurs : Seemay Chou ; Ksenia V. Krasileva [États-Unis] ; James M. Holton [États-Unis] ; Adam D. Steinbrenner [États-Unis] ; Tom Alber ; Brian J. Staskawicz [États-Unis]

Source :

RBID : PMC:3156156

Abstract

The in planta association of the Hyaloperonospora arabidopsidis effector ATR1 with the cognate Arabidopsis thaliana RPP1 immune receptor activates a disease-resistance signaling pathway that inhibits pathogen growth. To define the molecular events specifying effector recognition by RPP1, we determined the crystal structure of ATR1 and assayed in planta the effects of surface polymorphisms that are critical to activating plant immunity. ATR1 adopts an elongated, all-helical, two-domain, seahorse-like structure with an overall architecture unlike any previously described fold. Structural comparisons highlight a tandemly duplicated, five-helix motif in the C-terminal domain that creates a structural framework for rapid diversification. Identification and mapping of critical recognition sites suggest that ATR1 detection by the RPP1 resistance protein is mediated by several distinct protein surfaces that allow the effectors to escape recognition through diverse surface polymorphisms. ATR1 gain-of-recognition mutants demonstrate that multiple amino acid substitutions are necessary for recognition and that surface polymorphisms exert additive effects. These results suggest that ATR1 is a modular repeat protein belonging to an ancient family of oomycete effectors that rapidly evolves to escape host detection and adopt diverse virulence functions.


Url:
DOI: 10.1073/pnas.1109791108
PubMed: 21788488
PubMed Central: 3156156

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3156156

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<italic>Hyaloperonospora arabidopsidis</italic>
ATR1 effector is a repeat protein with distributed recognition surfaces</title>
<author>
<name sortKey="Chou, Seemay" sort="Chou, Seemay" uniqKey="Chou S" first="Seemay" last="Chou">Seemay Chou</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Krasileva, Ksenia V" sort="Krasileva, Ksenia V" uniqKey="Krasileva K" first="Ksenia V." last="Krasileva">Ksenia V. Krasileva</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holton, James M" sort="Holton, James M" uniqKey="Holton J" first="James M." last="Holton">James M. Holton</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff3">Department of Biochemistry and Biophysics,
<institution>University of California</institution>
, San Francisco, CA 94158</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">Advanced Light Source,
<institution>Lawrence Berkeley National Laboratory</institution>
, Berkeley, CA 94720</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Steinbrenner, Adam D" sort="Steinbrenner, Adam D" uniqKey="Steinbrenner A" first="Adam D." last="Steinbrenner">Adam D. Steinbrenner</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Alber, Tom" sort="Alber, Tom" uniqKey="Alber T" first="Tom" last="Alber">Tom Alber</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Staskawicz, Brian J" sort="Staskawicz, Brian J" uniqKey="Staskawicz B" first="Brian J." last="Staskawicz">Brian J. Staskawicz</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21788488</idno>
<idno type="pmc">3156156</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156156</idno>
<idno type="RBID">PMC:3156156</idno>
<idno type="doi">10.1073/pnas.1109791108</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000514</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000514</idno>
<idno type="wicri:Area/Pmc/Curation">000514</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000514</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<italic>Hyaloperonospora arabidopsidis</italic>
ATR1 effector is a repeat protein with distributed recognition surfaces</title>
<author>
<name sortKey="Chou, Seemay" sort="Chou, Seemay" uniqKey="Chou S" first="Seemay" last="Chou">Seemay Chou</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Krasileva, Ksenia V" sort="Krasileva, Ksenia V" uniqKey="Krasileva K" first="Ksenia V." last="Krasileva">Ksenia V. Krasileva</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holton, James M" sort="Holton, James M" uniqKey="Holton J" first="James M." last="Holton">James M. Holton</name>
<affiliation wicri:level="2">
<nlm:aff wicri:cut="; and" id="aff3">Department of Biochemistry and Biophysics,
<institution>University of California</institution>
, San Francisco, CA 94158</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff4">Advanced Light Source,
<institution>Lawrence Berkeley National Laboratory</institution>
, Berkeley, CA 94720</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Steinbrenner, Adam D" sort="Steinbrenner, Adam D" uniqKey="Steinbrenner A" first="Adam D." last="Steinbrenner">Adam D. Steinbrenner</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Alber, Tom" sort="Alber, Tom" uniqKey="Alber T" first="Tom" last="Alber">Tom Alber</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Staskawicz, Brian J" sort="Staskawicz, Brian J" uniqKey="Staskawicz B" first="Brian J." last="Staskawicz">Brian J. Staskawicz</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>, Berkeley</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The
<italic>in planta</italic>
association of the
<italic>Hyaloperonospora arabidopsidis</italic>
effector ATR1 with the cognate
<italic>Arabidopsis thaliana</italic>
RPP1 immune receptor activates a disease-resistance signaling pathway that inhibits pathogen growth. To define the molecular events specifying effector recognition by RPP1, we determined the crystal structure of ATR1 and assayed
<italic>in planta</italic>
the effects of surface polymorphisms that are critical to activating plant immunity. ATR1 adopts an elongated, all-helical, two-domain, seahorse-like structure with an overall architecture unlike any previously described fold. Structural comparisons highlight a tandemly duplicated, five-helix motif in the C-terminal domain that creates a structural framework for rapid diversification. Identification and mapping of critical recognition sites suggest that ATR1 detection by the RPP1 resistance protein is mediated by several distinct protein surfaces that allow the effectors to escape recognition through diverse surface polymorphisms. ATR1 gain-of-recognition mutants demonstrate that multiple amino acid substitutions are necessary for recognition and that surface polymorphisms exert additive effects. These results suggest that ATR1 is a modular repeat protein belonging to an ancient family of oomycete effectors that rapidly evolves to escape host detection and adopt diverse virulence functions.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Natl Acad Sci U S A</journal-id>
<journal-id journal-id-type="hwp">pnas</journal-id>
<journal-id journal-id-type="pmc">pnas</journal-id>
<journal-id journal-id-type="publisher-id">PNAS</journal-id>
<journal-title-group>
<journal-title>Proceedings of the National Academy of Sciences of the United States of America</journal-title>
</journal-title-group>
<issn pub-type="ppub">0027-8424</issn>
<issn pub-type="epub">1091-6490</issn>
<publisher>
<publisher-name>National Academy of Sciences</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21788488</article-id>
<article-id pub-id-type="pmc">3156156</article-id>
<article-id pub-id-type="publisher-id">201109791</article-id>
<article-id pub-id-type="doi">10.1073/pnas.1109791108</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Biological Sciences</subject>
<subj-group>
<subject>Plant Biology</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>Hyaloperonospora arabidopsidis</italic>
ATR1 effector is a repeat protein with distributed recognition surfaces</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Chou</surname>
<given-names>Seemay</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Krasileva</surname>
<given-names>Ksenia V.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Holton</surname>
<given-names>James M.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Steinbrenner</surname>
<given-names>Adam D.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Alber</surname>
<given-names>Tom</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Staskawicz</surname>
<given-names>Brian J.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>2</sup>
</xref>
</contrib>
<aff id="aff1">Departments of
<sup>a</sup>
Cell and Molecular Biology and</aff>
<aff id="aff2">
<sup>b</sup>
Plant and Microbial Biology,
<institution>University of California</institution>
, Berkeley, CA 94720;</aff>
<aff id="aff3">
<sup>c</sup>
Department of Biochemistry and Biophysics,
<institution>University of California</institution>
, San Francisco, CA 94158; and</aff>
<aff id="aff4">
<sup>d</sup>
Advanced Light Source,
<institution>Lawrence Berkeley National Laboratory</institution>
, Berkeley, CA 94720</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup>2</sup>
To whom correspondence may be addressed. E-mail:
<email>stask@berkeley.edu</email>
or
<email>tom@ucxray.berkeley.edu</email>
.</corresp>
<fn fn-type="con">
<p>Author contributions: S.C., K.V.K., J.M.H., A.D.S., T.A., and B.J.S. designed research; S.C., K.V.K., and A.D.S. performed research; K.V.K. contributed new reagents/analytic tools; S.C., K.V.K., J.M.H., A.D.S., T.A., and B.J.S. analyzed data; and S.C., K.V.K., A.D.S., T.A., and B.J.S. wrote the paper.</p>
</fn>
<fn fn-type="edited-by">
<p>Contributed by Brian J. Staskawicz, June 17, 2011 (sent for review April 14, 2011)</p>
</fn>
<fn id="fn1" fn-type="equal">
<p>
<sup>1</sup>
S.C. and K.K. contributed equally to this work.</p>
</fn>
<fn fn-type="conflict">
<p>The authors declare no conflict of interest.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>9</day>
<month>8</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>25</day>
<month>7</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>25</day>
<month>7</month>
<year>2011</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>108</volume>
<issue>32</issue>
<fpage>13323</fpage>
<lpage>13328</lpage>
<permissions>
<license license-type="open-access">
<license-p>Freely available online through the PNAS open access option.</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="pnas.201109791.pdf"></self-uri>
<abstract>
<p>The
<italic>in planta</italic>
association of the
<italic>Hyaloperonospora arabidopsidis</italic>
effector ATR1 with the cognate
<italic>Arabidopsis thaliana</italic>
RPP1 immune receptor activates a disease-resistance signaling pathway that inhibits pathogen growth. To define the molecular events specifying effector recognition by RPP1, we determined the crystal structure of ATR1 and assayed
<italic>in planta</italic>
the effects of surface polymorphisms that are critical to activating plant immunity. ATR1 adopts an elongated, all-helical, two-domain, seahorse-like structure with an overall architecture unlike any previously described fold. Structural comparisons highlight a tandemly duplicated, five-helix motif in the C-terminal domain that creates a structural framework for rapid diversification. Identification and mapping of critical recognition sites suggest that ATR1 detection by the RPP1 resistance protein is mediated by several distinct protein surfaces that allow the effectors to escape recognition through diverse surface polymorphisms. ATR1 gain-of-recognition mutants demonstrate that multiple amino acid substitutions are necessary for recognition and that surface polymorphisms exert additive effects. These results suggest that ATR1 is a modular repeat protein belonging to an ancient family of oomycete effectors that rapidly evolves to escape host detection and adopt diverse virulence functions.</p>
</abstract>
<kwd-group>
<kwd>plant innate immunity</kwd>
<kwd>obligate biotroph</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV2/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000514 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000514 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV2
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3156156
   |texte=   Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:21788488" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV2 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 24 19:18:52 2020. Site generation: Tue Nov 24 19:22:33 2020