Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.

Identifieur interne : 000210 ( Main/Corpus ); précédent : 000209; suivant : 000211

Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.

Auteurs : Emmanuelle Vigne ; Shahinez Garcia ; Véronique Komar ; Olivier Lemaire ; Jean-Michel Hily

Source :

RBID : pubmed:30524388

Abstract

Grapevine fanleaf virus (GFLV) is the main causal agent of fanleaf degeneration, the most damaging viral disease of grapevine. GFLV is included in most grapevine certification programs that rely on robust diagnostic tools such as biological indexing, serological methods, and molecular techniques, for the identification of clean stocks. The emergence of high throughput sequencing (HTS) offers new opportunities for detecting GFLV and other viruses in grapevine accessions of interest. Here, two HTS-based methods, i.e., RNAseq and smallRNAseq (focusing on the 21 to 27 nt) were explored for their potential to characterize the virome of grapevine samples from two 30-year-old GFLV-infected vineyards in the Champagne region of France. smallrnaseq was optimal for the detection of a wide range of viral species within a sample and RNAseq was the method of choice for full-length viral genome assembly. The implementation of a protocol to discriminate between low GFLV titer and in silico contamination (intra-lane contamination due to index misassignment) during data processing was critical for data analyses. Furthermore, we compared the performance of semi-quantitative DAS-ELISA (double antibody enzyme-linked immunosorbent assay), RT-qPCR (Reverse transcription-quantitative polymerase chain reaction), Immuno capture (IC)-RT-PCR, northern blot for viral small interfering RNA (vsiRNA) detection and RNAseq for the detection and quantification of GFLV. While detection limits were variable among methods, as expected, GFLV diagnosis was consistently achieved with all of these diagnostic methods. Together, this work highlights the robustness of DAS-ELISA, the current method routinely used in the French grapevine certification program, for the detection of GFLV and offers perspectives on the potential of HTS as an approach of high interest for certification.

DOI: 10.3389/fmicb.2018.02726
PubMed: 30524388
PubMed Central: PMC6262039

Links to Exploration step

pubmed:30524388

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.</title>
<author>
<name sortKey="Vigne, Emmanuelle" sort="Vigne, Emmanuelle" uniqKey="Vigne E" first="Emmanuelle" last="Vigne">Emmanuelle Vigne</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Shahinez" sort="Garcia, Shahinez" uniqKey="Garcia S" first="Shahinez" last="Garcia">Shahinez Garcia</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komar, Veronique" sort="Komar, Veronique" uniqKey="Komar V" first="Véronique" last="Komar">Véronique Komar</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lemaire, Olivier" sort="Lemaire, Olivier" uniqKey="Lemaire O" first="Olivier" last="Lemaire">Olivier Lemaire</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hily, Jean Michel" sort="Hily, Jean Michel" uniqKey="Hily J" first="Jean-Michel" last="Hily">Jean-Michel Hily</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30524388</idno>
<idno type="pmid">30524388</idno>
<idno type="doi">10.3389/fmicb.2018.02726</idno>
<idno type="pmc">PMC6262039</idno>
<idno type="wicri:Area/Main/Corpus">000210</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000210</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.</title>
<author>
<name sortKey="Vigne, Emmanuelle" sort="Vigne, Emmanuelle" uniqKey="Vigne E" first="Emmanuelle" last="Vigne">Emmanuelle Vigne</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Shahinez" sort="Garcia, Shahinez" uniqKey="Garcia S" first="Shahinez" last="Garcia">Shahinez Garcia</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Komar, Veronique" sort="Komar, Veronique" uniqKey="Komar V" first="Véronique" last="Komar">Véronique Komar</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lemaire, Olivier" sort="Lemaire, Olivier" uniqKey="Lemaire O" first="Olivier" last="Lemaire">Olivier Lemaire</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hily, Jean Michel" sort="Hily, Jean Michel" uniqKey="Hily J" first="Jean-Michel" last="Hily">Jean-Michel Hily</name>
<affiliation>
<nlm:affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grapevine fanleaf virus (GFLV) is the main causal agent of fanleaf degeneration, the most damaging viral disease of grapevine. GFLV is included in most grapevine certification programs that rely on robust diagnostic tools such as biological indexing, serological methods, and molecular techniques, for the identification of clean stocks. The emergence of high throughput sequencing (HTS) offers new opportunities for detecting GFLV and other viruses in grapevine accessions of interest. Here, two HTS-based methods,
<i>i.e.</i>
, RNAseq and smallRNAseq (focusing on the 21 to 27 nt) were explored for their potential to characterize the virome of grapevine samples from two 30-year-old GFLV-infected vineyards in the Champagne region of France. smallrnaseq was optimal for the detection of a wide range of viral species within a sample and RNAseq was the method of choice for full-length viral genome assembly. The implementation of a protocol to discriminate between low GFLV titer and
<i>in silico</i>
contamination (intra-lane contamination due to index misassignment) during data processing was critical for data analyses. Furthermore, we compared the performance of semi-quantitative DAS-ELISA (double antibody enzyme-linked immunosorbent assay), RT-qPCR (Reverse transcription-quantitative polymerase chain reaction), Immuno capture (IC)-RT-PCR, northern blot for viral small interfering RNA (vsiRNA) detection and RNAseq for the detection and quantification of GFLV. While detection limits were variable among methods, as expected, GFLV diagnosis was consistently achieved with all of these diagnostic methods. Together, this work highlights the robustness of DAS-ELISA, the current method routinely used in the French grapevine certification program, for the detection of GFLV and offers perspectives on the potential of HTS as an approach of high interest for certification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30524388</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.</ArticleTitle>
<Pagination>
<MedlinePgn>2726</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2018.02726</ELocationID>
<Abstract>
<AbstractText>Grapevine fanleaf virus (GFLV) is the main causal agent of fanleaf degeneration, the most damaging viral disease of grapevine. GFLV is included in most grapevine certification programs that rely on robust diagnostic tools such as biological indexing, serological methods, and molecular techniques, for the identification of clean stocks. The emergence of high throughput sequencing (HTS) offers new opportunities for detecting GFLV and other viruses in grapevine accessions of interest. Here, two HTS-based methods,
<i>i.e.</i>
, RNAseq and smallRNAseq (focusing on the 21 to 27 nt) were explored for their potential to characterize the virome of grapevine samples from two 30-year-old GFLV-infected vineyards in the Champagne region of France. smallrnaseq was optimal for the detection of a wide range of viral species within a sample and RNAseq was the method of choice for full-length viral genome assembly. The implementation of a protocol to discriminate between low GFLV titer and
<i>in silico</i>
contamination (intra-lane contamination due to index misassignment) during data processing was critical for data analyses. Furthermore, we compared the performance of semi-quantitative DAS-ELISA (double antibody enzyme-linked immunosorbent assay), RT-qPCR (Reverse transcription-quantitative polymerase chain reaction), Immuno capture (IC)-RT-PCR, northern blot for viral small interfering RNA (vsiRNA) detection and RNAseq for the detection and quantification of GFLV. While detection limits were variable among methods, as expected, GFLV diagnosis was consistently achieved with all of these diagnostic methods. Together, this work highlights the robustness of DAS-ELISA, the current method routinely used in the French grapevine certification program, for the detection of GFLV and offers perspectives on the potential of HTS as an approach of high interest for certification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vigne</LastName>
<ForeName>Emmanuelle</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Shahinez</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Komar</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hily</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>L'UMR Santé de la Vigne et Qualité du Vin, INRA-Université de Strasbourg, Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GFLV</Keyword>
<Keyword MajorTopicYN="N">contamination evaluation protocol</Keyword>
<Keyword MajorTopicYN="N">detection</Keyword>
<Keyword MajorTopicYN="N">grapevine</Keyword>
<Keyword MajorTopicYN="N">high-throughput sequencing</Keyword>
<Keyword MajorTopicYN="N">serological and molecular methods</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30524388</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2018.02726</ArticleId>
<ArticleId IdType="pmc">PMC6262039</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(8):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 May 21;58(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2013 Oct;58(2):346-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23523339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1302:249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25981259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2017 Feb;240:73-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27923589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1989 Apr;70 ( Pt 4):955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2471799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Jan;16(1):208-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28544449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Feb;16(2):660-671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28796912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2010 Jun;32(6):524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20486139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2017 Feb;162(2):577-579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27743254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Dec;99(12):1394-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Aug 29;9:1782</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30210456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Jul;10(4):537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2016 Sep;16(5):1255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26990372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2004 Aug;85(Pt 8):2435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Dec;94(Pt 12):2803-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24088345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Jun;166(1-2):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Jun;142(1-2):28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19428739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jun;105(6):758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25689518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Sep 30;392(2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 May 10;387(2):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2018 Nov;163(11):2937-2946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30033497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 May 10;400(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20172578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jun;105(6):716-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26056847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2011 Mar;156(3):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21140178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2008;153(9):1771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Aug 27;9:1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30210506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2018 Nov;163(11):3105-3111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30043203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 May 25;388(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19394993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Dec 13;11(12):e0167966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27959951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(1):e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22021376</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30524388
   |texte=   Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30524388" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020