Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea.

Identifieur interne : 000103 ( Main/Corpus ); précédent : 000102; suivant : 000104

Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea.

Auteurs : Shanshan Tian ; Xiangjing Yin ; Peining Fu ; Wei Wu ; Jiang Lu

Source :

RBID : pubmed:31892116

English descriptors

Abstract

The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from Vitis amurensis "Shuanghong", VaRGA1, was induced by Plasmopara viticola and could improve the resistance of tobacco to Phytophthora capsici. In this study, VaRGA1 in "Shuanghong" was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether VaRGA1 confers broad-spectrum resistance to pathogens, we transferred this gene into Arabidopsis and then treated with Hyaloperonospora arabidopsidis (Hpa), Botrytis cinerea (B. cinerea), and Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Results showed that VaRGA1 improved transgenic Arabidopsis thaliana resistance to the biotrophic Hpa and hemi-biotrophic PstDC3000, but decreased resistance to the necrotrophic B. cinerea. Additionally, qPCR assays showed that VaRGA1 plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of VaRGA1 was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of VaRGA1, and contributed to the identification of R-genes with broad-spectrum resistance function.

DOI: 10.3390/ijms21010193
PubMed: 31892116
PubMed Central: PMC6982372

Links to Exploration step

pubmed:31892116

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectopic Expression of Grapevine Gene
<i>VaRGA1</i>
in
<i>Arabidopsis</i>
Improves Resistance to Downy Mildew and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000 But Increases Susceptibility to
<i>Botrytis cinerea</i>
.</title>
<author>
<name sortKey="Tian, Shanshan" sort="Tian, Shanshan" uniqKey="Tian S" first="Shanshan" last="Tian">Shanshan Tian</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xiangjing" sort="Yin, Xiangjing" uniqKey="Yin X" first="Xiangjing" last="Yin">Xiangjing Yin</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fu, Peining" sort="Fu, Peining" uniqKey="Fu P" first="Peining" last="Fu">Peining Fu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Wei" sort="Wu, Wei" uniqKey="Wu W" first="Wei" last="Wu">Wei Wu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31892116</idno>
<idno type="pmid">31892116</idno>
<idno type="doi">10.3390/ijms21010193</idno>
<idno type="pmc">PMC6982372</idno>
<idno type="wicri:Area/Main/Corpus">000103</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000103</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectopic Expression of Grapevine Gene
<i>VaRGA1</i>
in
<i>Arabidopsis</i>
Improves Resistance to Downy Mildew and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000 But Increases Susceptibility to
<i>Botrytis cinerea</i>
.</title>
<author>
<name sortKey="Tian, Shanshan" sort="Tian, Shanshan" uniqKey="Tian S" first="Shanshan" last="Tian">Shanshan Tian</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Xiangjing" sort="Yin, Xiangjing" uniqKey="Yin X" first="Xiangjing" last="Yin">Xiangjing Yin</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fu, Peining" sort="Fu, Peining" uniqKey="Fu P" first="Peining" last="Fu">Peining Fu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Wei" sort="Wu, Wei" uniqKey="Wu W" first="Wei" last="Wu">Wei Wu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<affiliation>
<nlm:affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (microbiology)</term>
<term>Botrytis (pathogenicity)</term>
<term>Disease Resistance (genetics)</term>
<term>Ectopic Gene Expression (genetics)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Oomycetes (genetics)</term>
<term>Oomycetes (microbiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Pseudomonas syringae (pathogenicity)</term>
<term>Signal Transduction (genetics)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (microbiology)</term>
<term>Vitis (genetics)</term>
<term>Vitis (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Disease Resistance</term>
<term>Ectopic Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Lycopersicon esculentum</term>
<term>Oomycetes</term>
<term>Plant Diseases</term>
<term>Promoter Regions, Genetic</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Lycopersicon esculentum</term>
<term>Oomycetes</term>
<term>Plant Diseases</term>
<term>Tobacco</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Botrytis</term>
<term>Pseudomonas syringae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from
<i>Vitis amurensis</i>
"Shuanghong",
<i>VaRGA1</i>
, was induced by
<i>Plasmopara viticola</i>
and could improve the resistance of tobacco to
<i>Phytophthora capsici</i>
. In this study,
<i>VaRGA1</i>
in "Shuanghong" was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether
<i>VaRGA1</i>
confers broad-spectrum resistance to pathogens, we transferred this gene into
<i>Arabidopsis</i>
and then treated with
<i>Hyaloperonospora arabidopsidis</i>
(
<i>Hpa</i>
),
<i>Botrytis cinerea</i>
(
<i>B. cinerea</i>
), and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000 (
<i>Pst</i>
DC3000). Results showed that
<i>VaRGA1</i>
improved transgenic
<i>Arabidopsis thaliana</i>
resistance to the biotrophic
<i>Hpa</i>
and hemi-biotrophic
<i>Pst</i>
DC3000, but decreased resistance to the necrotrophic
<i>B. cinerea</i>
. Additionally, qPCR assays showed that
<i>VaRGA1</i>
plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of
<i>VaRGA1</i>
was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of
<i>VaRGA1</i>
, and contributed to the identification of R-genes with broad-spectrum resistance function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31892116</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectopic Expression of Grapevine Gene
<i>VaRGA1</i>
in
<i>Arabidopsis</i>
Improves Resistance to Downy Mildew and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000 But Increases Susceptibility to
<i>Botrytis cinerea</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E193</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21010193</ELocationID>
<Abstract>
<AbstractText>The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from
<i>Vitis amurensis</i>
"Shuanghong",
<i>VaRGA1</i>
, was induced by
<i>Plasmopara viticola</i>
and could improve the resistance of tobacco to
<i>Phytophthora capsici</i>
. In this study,
<i>VaRGA1</i>
in "Shuanghong" was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether
<i>VaRGA1</i>
confers broad-spectrum resistance to pathogens, we transferred this gene into
<i>Arabidopsis</i>
and then treated with
<i>Hyaloperonospora arabidopsidis</i>
(
<i>Hpa</i>
),
<i>Botrytis cinerea</i>
(
<i>B. cinerea</i>
), and
<i>Pseudomonas syringae</i>
pv.
<i>tomato</i>
DC3000 (
<i>Pst</i>
DC3000). Results showed that
<i>VaRGA1</i>
improved transgenic
<i>Arabidopsis thaliana</i>
resistance to the biotrophic
<i>Hpa</i>
and hemi-biotrophic
<i>Pst</i>
DC3000, but decreased resistance to the necrotrophic
<i>B. cinerea</i>
. Additionally, qPCR assays showed that
<i>VaRGA1</i>
plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of
<i>VaRGA1</i>
was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of
<i>VaRGA1</i>
, and contributed to the identification of R-genes with broad-spectrum resistance function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Shanshan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Xiangjing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Peining</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CARS-29-yc-2</GrantID>
<Agency>Agriculture Research System of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>WF107115001</GrantID>
<Agency>the Start-up Fund from Shanghai Jiao Tong University</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2013-3</GrantID>
<Agency>Guangxi Bagui Scholar Fund</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020171" MajorTopicYN="N">Botrytis</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000066630" MajorTopicYN="N">Ectopic Gene Expression</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NBS-LRR</Keyword>
<Keyword MajorTopicYN="N">VaRGA1</Keyword>
<Keyword MajorTopicYN="N">broad-spectrum</Keyword>
<Keyword MajorTopicYN="N">disease resistance</Keyword>
<Keyword MajorTopicYN="N">histochemical staining</Keyword>
<Keyword MajorTopicYN="N">signaling pathways</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31892116</ArticleId>
<ArticleId IdType="pii">ijms21010193</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21010193</ArticleId>
<ArticleId IdType="pmc">PMC6982372</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 09;12:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Apr 10;23(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29642567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 29;8:1687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2016 May;7(3):356-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26924473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2745-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Oct;95:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26151858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Feb 06;9:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2018 May;23(3):335-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28939948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jan 15;16(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2017 Aug 16;22(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28813015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2006 Sep;31(3):389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):829-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Jul;248:17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27181943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1975-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26336092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jul;18(7):1736-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jul;5(7):e1000545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):810-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 1;20(19):5400-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11574472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Mar;96(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 15;7:1379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(5):777-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Apr 27;9:847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29755447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Jan;237(1):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Aug 19;412(1):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21806969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Oct 11;7:13099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27725643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):966-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2007 Nov;131(3):434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Sep 30;19(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30274342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Feb 8;19(1):128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29422035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Apr;34(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Jun 10;19(6):7679-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24918540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Nov;31(11):2109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2017 Mar;254(2):957-969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27468994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 05;4:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(3):554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1897-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Apr;19(4):858-869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28600875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 09;8:1398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28848595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Feb;40(2):1473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23070919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 May;23(5):558-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(1):85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):177-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Sep 17;18(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28926983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 May;78(4):619-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24617729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2013 Mar;29(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(2):188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):996-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21418352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Feb 01;9:84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29449858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Mar;11(2):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 13;19(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29534026</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31892116
   |texte=   Ectopic Expression of Grapevine Gene VaRGA1 in Arabidopsis Improves Resistance to Downy Mildew and Pseudomonas syringae pv. tomato DC3000 But Increases Susceptibility to Botrytis cinerea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31892116" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020