Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.

Identifieur interne : 000102 ( Main/Corpus ); précédent : 000101; suivant : 000103

Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.

Auteurs : Cheng Zou ; Avinash Karn ; Bruce Reisch ; Allen Nguyen ; Yongming Sun ; Yun Bao ; Michael S. Campbell ; Deanna Church ; Stephen Williams ; Xia Xu ; Craig A. Ledbetter ; Sagar Patel ; Anne Fennell ; Jeffrey C. Glaubitz ; Matthew Clark ; Doreen Ware ; Jason P. Londo ; Qi Sun ; Lance Cadle-Davidson

Source :

RBID : pubmed:31964885

English descriptors

Abstract

Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.

DOI: 10.1038/s41467-019-14280-1
PubMed: 31964885
PubMed Central: PMC6972940

Links to Exploration step

pubmed:31964885

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.</title>
<author>
<name sortKey="Zou, Cheng" sort="Zou, Cheng" uniqKey="Zou C" first="Cheng" last="Zou">Cheng Zou</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Avinash" sort="Karn, Avinash" uniqKey="Karn A" first="Avinash" last="Karn">Avinash Karn</name>
<affiliation>
<nlm:affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reisch, Bruce" sort="Reisch, Bruce" uniqKey="Reisch B" first="Bruce" last="Reisch">Bruce Reisch</name>
<affiliation>
<nlm:affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Allen" sort="Nguyen, Allen" uniqKey="Nguyen A" first="Allen" last="Nguyen">Allen Nguyen</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yongming" sort="Sun, Yongming" uniqKey="Sun Y" first="Yongming" last="Sun">Yongming Sun</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yun" sort="Bao, Yun" uniqKey="Bao Y" first="Yun" last="Bao">Yun Bao</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Michael S" sort="Campbell, Michael S" uniqKey="Campbell M" first="Michael S" last="Campbell">Michael S. Campbell</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Church, Deanna" sort="Church, Deanna" uniqKey="Church D" first="Deanna" last="Church">Deanna Church</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Stephen" sort="Williams, Stephen" uniqKey="Williams S" first="Stephen" last="Williams">Stephen Williams</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xia" sort="Xu, Xia" uniqKey="Xu X" first="Xia" last="Xu">Xia Xu</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledbetter, Craig A" sort="Ledbetter, Craig A" uniqKey="Ledbetter C" first="Craig A" last="Ledbetter">Craig A. Ledbetter</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Crop Diseases, Pests and Genetics Research, Parlier, CA, 93648, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Sagar" sort="Patel, Sagar" uniqKey="Patel S" first="Sagar" last="Patel">Sagar Patel</name>
<affiliation>
<nlm:affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fennell, Anne" sort="Fennell, Anne" uniqKey="Fennell A" first="Anne" last="Fennell">Anne Fennell</name>
<affiliation>
<nlm:affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glaubitz, Jeffrey C" sort="Glaubitz, Jeffrey C" uniqKey="Glaubitz J" first="Jeffrey C" last="Glaubitz">Jeffrey C. Glaubitz</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clark, Matthew" sort="Clark, Matthew" uniqKey="Clark M" first="Matthew" last="Clark">Matthew Clark</name>
<affiliation>
<nlm:affiliation>Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ware, Doreen" sort="Ware, Doreen" uniqKey="Ware D" first="Doreen" last="Ware">Doreen Ware</name>
<affiliation>
<nlm:affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Londo, Jason P" sort="Londo, Jason P" uniqKey="Londo J" first="Jason P" last="Londo">Jason P. Londo</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qi" sort="Sun, Qi" uniqKey="Sun Q" first="Qi" last="Sun">Qi Sun</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cadle Davidson, Lance" sort="Cadle Davidson, Lance" uniqKey="Cadle Davidson L" first="Lance" last="Cadle-Davidson">Lance Cadle-Davidson</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA. Lance.CadleDavidson@ars.usda.gov.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31964885</idno>
<idno type="pmid">31964885</idno>
<idno type="doi">10.1038/s41467-019-14280-1</idno>
<idno type="pmc">PMC6972940</idno>
<idno type="wicri:Area/Main/Corpus">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.</title>
<author>
<name sortKey="Zou, Cheng" sort="Zou, Cheng" uniqKey="Zou C" first="Cheng" last="Zou">Cheng Zou</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karn, Avinash" sort="Karn, Avinash" uniqKey="Karn A" first="Avinash" last="Karn">Avinash Karn</name>
<affiliation>
<nlm:affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reisch, Bruce" sort="Reisch, Bruce" uniqKey="Reisch B" first="Bruce" last="Reisch">Bruce Reisch</name>
<affiliation>
<nlm:affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Allen" sort="Nguyen, Allen" uniqKey="Nguyen A" first="Allen" last="Nguyen">Allen Nguyen</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yongming" sort="Sun, Yongming" uniqKey="Sun Y" first="Yongming" last="Sun">Yongming Sun</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yun" sort="Bao, Yun" uniqKey="Bao Y" first="Yun" last="Bao">Yun Bao</name>
<affiliation>
<nlm:affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Campbell, Michael S" sort="Campbell, Michael S" uniqKey="Campbell M" first="Michael S" last="Campbell">Michael S. Campbell</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Church, Deanna" sort="Church, Deanna" uniqKey="Church D" first="Deanna" last="Church">Deanna Church</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Stephen" sort="Williams, Stephen" uniqKey="Williams S" first="Stephen" last="Williams">Stephen Williams</name>
<affiliation>
<nlm:affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xia" sort="Xu, Xia" uniqKey="Xu X" first="Xia" last="Xu">Xia Xu</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledbetter, Craig A" sort="Ledbetter, Craig A" uniqKey="Ledbetter C" first="Craig A" last="Ledbetter">Craig A. Ledbetter</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Crop Diseases, Pests and Genetics Research, Parlier, CA, 93648, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Sagar" sort="Patel, Sagar" uniqKey="Patel S" first="Sagar" last="Patel">Sagar Patel</name>
<affiliation>
<nlm:affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fennell, Anne" sort="Fennell, Anne" uniqKey="Fennell A" first="Anne" last="Fennell">Anne Fennell</name>
<affiliation>
<nlm:affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glaubitz, Jeffrey C" sort="Glaubitz, Jeffrey C" uniqKey="Glaubitz J" first="Jeffrey C" last="Glaubitz">Jeffrey C. Glaubitz</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clark, Matthew" sort="Clark, Matthew" uniqKey="Clark M" first="Matthew" last="Clark">Matthew Clark</name>
<affiliation>
<nlm:affiliation>Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ware, Doreen" sort="Ware, Doreen" uniqKey="Ware D" first="Doreen" last="Ware">Doreen Ware</name>
<affiliation>
<nlm:affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Londo, Jason P" sort="Londo, Jason P" uniqKey="Londo J" first="Jason P" last="Londo">Jason P. Londo</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Qi" sort="Sun, Qi" uniqKey="Sun Q" first="Qi" last="Sun">Qi Sun</name>
<affiliation>
<nlm:affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cadle Davidson, Lance" sort="Cadle Davidson, Lance" uniqKey="Cadle Davidson L" first="Lance" last="Cadle-Davidson">Lance Cadle-Davidson</name>
<affiliation>
<nlm:affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA. Lance.CadleDavidson@ars.usda.gov.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Chromosome Mapping (methods)</term>
<term>DNA, Plant (genetics)</term>
<term>DNA, Plant (isolation & purification)</term>
<term>Genetic Markers (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotyping Techniques (methods)</term>
<term>Haplotypes (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Breeding (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Microsatellite Repeats</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Genotyping Techniques</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Genome, Plant</term>
<term>Haplotypes</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Phylogeny</term>
<term>Plant Breeding</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31964885</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.</ArticleTitle>
<Pagination>
<MedlinePgn>413</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-019-14280-1</ELocationID>
<Abstract>
<AbstractText>Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0001-9325-9465</Identifier>
<AffiliationInfo>
<Affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karn</LastName>
<ForeName>Avinash</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-9730-8922</Identifier>
<AffiliationInfo>
<Affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reisch</LastName>
<ForeName>Bruce</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0003-0197-7123</Identifier>
<AffiliationInfo>
<Affiliation>School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Allen</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yongming</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Integrated DNA Technologies, Redwood City, CA, 94063, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Michael S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Church</LastName>
<ForeName>Deanna</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0003-4264-1853</Identifier>
<AffiliationInfo>
<Affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>10x Genomics, Inc., Pleasanton, CA, 94566, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xia</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ledbetter</LastName>
<ForeName>Craig A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS, Crop Diseases, Pests and Genetics Research, Parlier, CA, 93648, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Sagar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fennell</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-4234-6419</Identifier>
<AffiliationInfo>
<Affiliation>Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glaubitz</LastName>
<ForeName>Jeffrey C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-1771-1955</Identifier>
<AffiliationInfo>
<Affiliation>Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ware</LastName>
<ForeName>Doreen</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-8125-3821</Identifier>
<AffiliationInfo>
<Affiliation>Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Londo</LastName>
<ForeName>Jason P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cadle-Davidson</LastName>
<ForeName>Lance</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-4241-4634</Identifier>
<AffiliationInfo>
<Affiliation>USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA. Lance.CadleDavidson@ars.usda.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2017- 51181-26829</GrantID>
<Agency>United States Department of Agriculture | National Institute of Food and Agriculture (NIFA)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>SD00R668-18</GrantID>
<Agency>United States Department of Agriculture | National Institute of Food and Agriculture (NIFA)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>8060-21220-007-00-D</GrantID>
<Agency>United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060005" MajorTopicYN="N">Genotyping Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="Y">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="N">Plant Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31964885</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-019-14280-1</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-019-14280-1</ArticleId>
<ArticleId IdType="pmc">PMC6972940</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2018 Jan 17;19(1):57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006 Sep 22;6:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2019 Aug 20;10:736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31481971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Feb;40(2):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2012 Mar;287(3):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22258113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11715-11720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29042518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 17;8:826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28567052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Feb;17(2):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genom Data. 2017 Sep 18;14:56-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28971018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Sep 15;5(11):2383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26377960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2019 May;132(5):1571-1585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30756127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1980 May;32(3):314-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6247908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013;14(9):R103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Jan;102(1):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22165984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2019 Sep;5(9):965-979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31506640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Dec 15;28(24):3326-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23060615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):757-767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28381613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Dec 1;33(23):3726-3732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Apr 14;11:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2013 Jul 05;13:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23826735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2014 Jun 27;10:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25053969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Breed. 2017;37(1):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28127252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Apr;108(6):1147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15067402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2011 Oct;49(2):129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21302150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Dec 16;8:128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):2076-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2011 Aug 10;11:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 Apr;122(6):1059-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21188350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 16;6:6914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25881062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Jun 17;12(7):499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Sep;16(18):3759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17850543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 05;10(8):e0134880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26244767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2013 Jul;54(3):1031-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Apr 18;12:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2012 Nov;12(6):1145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22994965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3530-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Aug;28(8):1759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 14;11(3):e0149560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26974672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Sep 15;34(18):3094-3100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29750242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2016 Feb 17;3:16002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27257505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jul 28;11:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21797998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2010 Dec 30;7(1):18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Aug 25;17(16):6463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2780284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31964885
   |texte=   Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31964885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020