Serveur d'exploration sur la glutarédoxine - Exploration (Accueil)

Index « KwdFr.i » - entrée « Transport biologique (MeSH) »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Transplantation tumorale (MeSH) < Transport biologique (MeSH) < Transport biologique (physiologie)  Facettes :

List of bibliographic references indexed by Transport biologique (MeSH)

Number of relevant bibliographic references: 15.
Ident.Authors (with country if any)Title
000015 (2020) Ryosuke Ota [Japon] ; Yuri Ohkubo [Japon] ; Yasuko Yamashita [Japon] ; Mari Ogawa-Ohnishi [Japon] ; Yoshikatsu Matsubayashi [Japon]Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis.
000184 (2019) Linda C. Horianopoulos [Canada] ; James W. Kronstad [Canada]Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.
000420 (2016) Andrew Melber [États-Unis] ; Un Na [États-Unis] ; Ajay Vashisht [États-Unis] ; Benjamin D. Weiler [Allemagne] ; Roland Lill [Allemagne] ; James A. Wohlschlegel [États-Unis] ; Dennis R. Winge [États-Unis]Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients.
000435 (2016) Pankaj Kumar Verma [Inde] ; Shikha Verma [Inde] ; Alok Kumar Meher [Inde] ; Veena Pande [Inde] ; Shekhar Mallick [Inde] ; Amit Kumar Bansiwal [Inde] ; Rudra Deo Tripathi [Inde] ; Om Parkash Dhankher [États-Unis] ; Debasis Chakrabarty [Inde]Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast.
000451 (2016) Insiya Fidai [États-Unis] ; Christine Wachnowsky [États-Unis] ; J A Cowan [États-Unis]Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.
000467 (2016) Christine Wachnowsky [États-Unis] ; Insiya Fidai [États-Unis] ; James A. Cowan [États-Unis]Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3.
000736 (2013) Daphne T. Mapolelo [États-Unis] ; Bo Zhang ; Sajini Randeniya ; Angela-Nadia Albetel ; Haoran Li ; Jérémy Couturier ; Caryn E. Outten ; Nicolas Rouhier ; Michael K. JohnsonMonothiol glutaredoxins and A-type proteins: partners in Fe-S cluster trafficking.
000757 (2013) Nicola Giangregorio [Italie] ; Ferdinando Palmieri ; Cesare IndiveriGlutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.
000845 (2012) Aristi P. Fernandes [Suède] ; Marita Wallenberg ; Valentina Gandin ; Sougat Misra ; Francesco Tisato ; Cristina Marzano ; Maria Pia Rigobello ; Sushil Kumar ; Mikael BjörnstedtMethylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.
000872 (2012) Yuta Hatori [États-Unis] ; Sara Clasen ; Nesrin M. Hasan ; Amanda N. Barry ; Svetlana LutsenkoFunctional partnership of the copper export machinery and glutathione balance in human cells.
000883 (2012) Caroline C. Philpott [États-Unis]Coming into view: eukaryotic iron chaperones and intracellular iron delivery.
000A44 (2010) Ulrich Mühlenhoff [Allemagne] ; Sabine Molik [Allemagne] ; José R. Godoy [Allemagne] ; Marta A. Uzarska [Allemagne] ; Nadine Richter [Allemagne] ; Andreas Seubert [Allemagne] ; Yan Zhang [États-Unis] ; Joanne Stubbe [États-Unis] ; Fabien Pierrel [France] ; Enrique Herrero [Espagne] ; Christopher Horst Lillig [Allemagne] ; Roland Lill [Allemagne]Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster.
000A59 (2010) Heather M. Bolstad [États-Unis] ; Matthew J. WoodAn in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli.
000C99 (2006) Carla M. Koehler [États-Unis] ; Kristen N. Beverly ; Edward P. LeverichRedox pathways of the mitochondrion.
001059 (2000) Gregory M. Cook ; Robert K. PooleOxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem-membrane association.

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdFr.i -k "Transport biologique (MeSH)" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdFr.i  \
                -Sk "Transport biologique (MeSH)" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    indexItem
   |index=    KwdFr.i
   |clé=    Transport biologique (MeSH)
}}

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020