Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?

Identifieur interne : 001029 ( Main/Exploration ); précédent : 001028; suivant : 001030

Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?

Auteurs : J S Fetrow [États-Unis] ; N. Siew ; J A Di Gennaro ; M. Martinez-Yamout ; H J Dyson ; J. Skolnick

Source :

RBID : pubmed:11316881

Descripteurs français

English descriptors

Abstract

A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone.

DOI: 10.1110/ps.49201
PubMed: 11316881
PubMed Central: PMC2374196


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?</title>
<author>
<name sortKey="Fetrow, J S" sort="Fetrow, J S" uniqKey="Fetrow J" first="J S" last="Fetrow">J S Fetrow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siew, N" sort="Siew, N" uniqKey="Siew N" first="N" last="Siew">N. Siew</name>
</author>
<author>
<name sortKey="Di Gennaro, J A" sort="Di Gennaro, J A" uniqKey="Di Gennaro J" first="J A" last="Di Gennaro">J A Di Gennaro</name>
</author>
<author>
<name sortKey="Martinez Yamout, M" sort="Martinez Yamout, M" uniqKey="Martinez Yamout M" first="M" last="Martinez-Yamout">M. Martinez-Yamout</name>
</author>
<author>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
</author>
<author>
<name sortKey="Skolnick, J" sort="Skolnick, J" uniqKey="Skolnick J" first="J" last="Skolnick">J. Skolnick</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11316881</idno>
<idno type="pmid">11316881</idno>
<idno type="pmc">PMC2374196</idno>
<idno type="doi">10.1110/ps.49201</idno>
<idno type="wicri:Area/Main/Corpus">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001030</idno>
<idno type="wicri:Area/Main/Curation">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001030</idno>
<idno type="wicri:Area/Main/Exploration">001030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?</title>
<author>
<name sortKey="Fetrow, J S" sort="Fetrow, J S" uniqKey="Fetrow J" first="J S" last="Fetrow">J S Fetrow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siew, N" sort="Siew, N" uniqKey="Siew N" first="N" last="Siew">N. Siew</name>
</author>
<author>
<name sortKey="Di Gennaro, J A" sort="Di Gennaro, J A" uniqKey="Di Gennaro J" first="J A" last="Di Gennaro">J A Di Gennaro</name>
</author>
<author>
<name sortKey="Martinez Yamout, M" sort="Martinez Yamout, M" uniqKey="Martinez Yamout M" first="M" last="Martinez-Yamout">M. Martinez-Yamout</name>
</author>
<author>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
</author>
<author>
<name sortKey="Skolnick, J" sort="Skolnick, J" uniqKey="Skolnick J" first="J" last="Skolnick">J. Skolnick</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Amino Acid Motifs (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Caenorhabditis elegans (enzymology)</term>
<term>Caenorhabditis elegans (genetics)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Databases as Topic (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Subunits (MeSH)</term>
<term>Quantitative Structure-Activity Relationship (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Bases de données comme sujet (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Caenorhabditis elegans (enzymologie)</term>
<term>Caenorhabditis elegans (génétique)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Dichroïsme circulaire (MeSH)</term>
<term>Génome fongique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Relation quantitative structure-activité (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Sous-unités de protéines (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Motifs</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Circular Dichroism</term>
<term>Databases as Topic</term>
<term>Genome, Fungal</term>
<term>Humans</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Protein Subunits</term>
<term>Quantitative Structure-Activity Relationship</term>
<term>Reproducibility of Results</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Bases de données comme sujet</term>
<term>Conformation des protéines</term>
<term>Dichroïsme circulaire</term>
<term>Génome fongique</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Motifs d'acides aminés</term>
<term>Relation quantitative structure-activité</term>
<term>Reproductibilité des résultats</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Sous-unités de protéines</term>
<term>Spectroscopie par résonance magnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11316881</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2001</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?</ArticleTitle>
<Pagination>
<MedlinePgn>1005-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fetrow</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siew</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Di Gennaro</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martinez-Yamout</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dyson</LastName>
<ForeName>H J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skolnick</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM048835</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM48835</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019992" MajorTopicYN="N">Databases as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021281" MajorTopicYN="Y">Quantitative Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11316881</ArticleId>
<ArticleId IdType="pmc">PMC2374196</ArticleId>
<ArticleId IdType="doi">10.1110/ps.49201</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1998 Oct 2;282(4):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9743619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):226-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 6;1426(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Chromosomes Cancer. 1999 Jan;24(1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fold Des. 1998;3(6):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 5;274(10):6366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10037727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Mar 5;286(4):1229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10047493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Apr 23;288(1):147-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jun 11;274(24):17249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10358084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Oct;13(13):1866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10506591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2000 Jan;18(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Mar;18(3):283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10700142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 1;108(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1761235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1991 Aug;110(2):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1761527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1992 Feb;8(2):117-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Oct;12(10):4601-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1406650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Aug;130(3):567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7622558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Nov 10;253(5):799-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7473753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Feb 2;255(4):641-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8568903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jan 1;24(1):197-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8594578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Feb 13;35(6):1972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1996 Jul 1;35(1):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8661104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Feb;6(2):383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9041640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 4;36(9):2622-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Comput Sci. 1997 May-Jun;37(3):417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Sep 22;138(6):1229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Oct 29;239(3):710-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Nov;6(11):2308-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9385633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Apr;18(4):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Jun;7(6):1431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Jul 15;6(7):875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Sep 4;281(5):949-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9719646</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Di Gennaro, J A" sort="Di Gennaro, J A" uniqKey="Di Gennaro J" first="J A" last="Di Gennaro">J A Di Gennaro</name>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
<name sortKey="Martinez Yamout, M" sort="Martinez Yamout, M" uniqKey="Martinez Yamout M" first="M" last="Martinez-Yamout">M. Martinez-Yamout</name>
<name sortKey="Siew, N" sort="Siew, N" uniqKey="Siew N" first="N" last="Siew">N. Siew</name>
<name sortKey="Skolnick, J" sort="Skolnick, J" uniqKey="Skolnick J" first="J" last="Skolnick">J. Skolnick</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Fetrow, J S" sort="Fetrow, J S" uniqKey="Fetrow J" first="J S" last="Fetrow">J S Fetrow</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001029 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001029 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11316881
   |texte=   Genomic-scale comparison of sequence- and structure-based methods of function prediction: does structure provide additional insight?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11316881" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020