Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.

Identifieur interne : 000C41 ( Main/Exploration ); précédent : 000C40; suivant : 000C42

Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.

Auteurs : Edson R. Rocha [États-Unis] ; Arthur O. Tzianabos ; C Jeffrey Smith

Source :

RBID : pubmed:17873045

Descripteurs français

English descriptors

Abstract

Results of this study showed that the anaerobic, opportunistic pathogen Bacteroides fragilis lacks the glutathione/glutaredoxin redox system and possesses an extensive number of putative thioredoxin (Trx) orthologs. Analysis of the genome sequence revealed six Trx orthologs and an absence of genes required for synthesis of glutathione and glutaredoxins. In addition, it was shown that the thioredoxin reductase (TrxB)/Trx system is the major or sole redox system for thiol/disulfide cellular homeostasis in this anaerobic bacterium. Expression of the B. fragilis trxB gene was induced following treatment with diamide or H(2)O(2) or exposure to oxygen. This inducible trxB expression was OxyR independent. Northern blot hybridization analysis showed that the trxB mRNA was cotranscribed with lolA as a bicistronic transcript or was present as a monocistronic transcript that was also highly induced under the same conditions. The role of LolA, a prokaryotic periplasmic lipoprotein-specific molecular chaperone in the thiol/disulfide redox system, is unknown. A trxB deletion mutant was more sensitive to the effects of diamide and oxygen than the parent strain. In addition, the trxB mutant was unable to grow in culture media without addition of a reductant. Furthermore, the trxB mutant was not able to induce intraabdominal abscess formation in a mouse model, whereas the parent strain was. Taken together, these data strongly suggest that TrxB/Trx is the major, if not the sole, thiol/disulfide redox system in this anaerobe required for survival and abscess formation in a peritoneal cavity infection model.

DOI: 10.1128/JB.00714-07
PubMed: 17873045
PubMed Central: PMC2168685


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.</title>
<author>
<name sortKey="Rocha, Edson R" sort="Rocha, Edson R" uniqKey="Rocha E" first="Edson R" last="Rocha">Edson R. Rocha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, East Carolina University Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology & Immunology, East Carolina University Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tzianabos, Arthur O" sort="Tzianabos, Arthur O" uniqKey="Tzianabos A" first="Arthur O" last="Tzianabos">Arthur O. Tzianabos</name>
</author>
<author>
<name sortKey="Smith, C Jeffrey" sort="Smith, C Jeffrey" uniqKey="Smith C" first="C Jeffrey" last="Smith">C Jeffrey Smith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17873045</idno>
<idno type="pmid">17873045</idno>
<idno type="doi">10.1128/JB.00714-07</idno>
<idno type="pmc">PMC2168685</idno>
<idno type="wicri:Area/Main/Corpus">000C44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C44</idno>
<idno type="wicri:Area/Main/Curation">000C44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C44</idno>
<idno type="wicri:Area/Main/Exploration">000C44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.</title>
<author>
<name sortKey="Rocha, Edson R" sort="Rocha, Edson R" uniqKey="Rocha E" first="Edson R" last="Rocha">Edson R. Rocha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, East Carolina University Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology & Immunology, East Carolina University Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tzianabos, Arthur O" sort="Tzianabos, Arthur O" uniqKey="Tzianabos A" first="Arthur O" last="Tzianabos">Arthur O. Tzianabos</name>
</author>
<author>
<name sortKey="Smith, C Jeffrey" sort="Smith, C Jeffrey" uniqKey="Smith C" first="C Jeffrey" last="Smith">C Jeffrey Smith</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abdominal Abscess (microbiology)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Anaerobiosis (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bacteroides Infections (microbiology)</term>
<term>Bacteroides fragilis (drug effects)</term>
<term>Bacteroides fragilis (enzymology)</term>
<term>Bacteroides fragilis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Survival (MeSH)</term>
<term>Diamide (pharmacology)</term>
<term>Disulfides (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Glutathione (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Peroxides (pharmacology)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Abcès abdominal (microbiologie)</term>
<term>Anaérobiose (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Bacteroides fragilis (effets des médicaments et des substances chimiques)</term>
<term>Bacteroides fragilis (enzymologie)</term>
<term>Bacteroides fragilis (génétique)</term>
<term>Disulfures (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Infections à Bacteroides (microbiologie)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Peroxydes (pharmacologie)</term>
<term>Régulation de l'expression des gènes bactériens (effets des médicaments et des substances chimiques)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Survie cellulaire (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thiols (métabolisme)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Tétraméthyl-diazènedicarboxamide (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Disulfides</term>
<term>Glutathione</term>
<term>Sulfhydryl Compounds</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Diamide</term>
<term>Peroxides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacteroides fragilis</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bacteroides fragilis</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacteroides fragilis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacteroides fragilis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteroides fragilis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacteroides fragilis</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Abcès abdominal</term>
<term>Infections à Bacteroides</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Abdominal Abscess</term>
<term>Bacteroides Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfures</term>
<term>Glutathion</term>
<term>Thiols</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxydes</term>
<term>Tétraméthyl-diazènedicarboxamide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Anaerobiosis</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Cell Survival</term>
<term>Gene Deletion</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Anaérobiose</term>
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de gène</term>
<term>Facteurs temps</term>
<term>Souris</term>
<term>Survie cellulaire</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Results of this study showed that the anaerobic, opportunistic pathogen Bacteroides fragilis lacks the glutathione/glutaredoxin redox system and possesses an extensive number of putative thioredoxin (Trx) orthologs. Analysis of the genome sequence revealed six Trx orthologs and an absence of genes required for synthesis of glutathione and glutaredoxins. In addition, it was shown that the thioredoxin reductase (TrxB)/Trx system is the major or sole redox system for thiol/disulfide cellular homeostasis in this anaerobic bacterium. Expression of the B. fragilis trxB gene was induced following treatment with diamide or H(2)O(2) or exposure to oxygen. This inducible trxB expression was OxyR independent. Northern blot hybridization analysis showed that the trxB mRNA was cotranscribed with lolA as a bicistronic transcript or was present as a monocistronic transcript that was also highly induced under the same conditions. The role of LolA, a prokaryotic periplasmic lipoprotein-specific molecular chaperone in the thiol/disulfide redox system, is unknown. A trxB deletion mutant was more sensitive to the effects of diamide and oxygen than the parent strain. In addition, the trxB mutant was unable to grow in culture media without addition of a reductant. Furthermore, the trxB mutant was not able to induce intraabdominal abscess formation in a mouse model, whereas the parent strain was. Taken together, these data strongly suggest that TrxB/Trx is the major, if not the sole, thiol/disulfide redox system in this anaerobe required for survival and abscess formation in a peritoneal cavity infection model.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17873045</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>189</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2007</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.</ArticleTitle>
<Pagination>
<MedlinePgn>8015-23</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Results of this study showed that the anaerobic, opportunistic pathogen Bacteroides fragilis lacks the glutathione/glutaredoxin redox system and possesses an extensive number of putative thioredoxin (Trx) orthologs. Analysis of the genome sequence revealed six Trx orthologs and an absence of genes required for synthesis of glutathione and glutaredoxins. In addition, it was shown that the thioredoxin reductase (TrxB)/Trx system is the major or sole redox system for thiol/disulfide cellular homeostasis in this anaerobic bacterium. Expression of the B. fragilis trxB gene was induced following treatment with diamide or H(2)O(2) or exposure to oxygen. This inducible trxB expression was OxyR independent. Northern blot hybridization analysis showed that the trxB mRNA was cotranscribed with lolA as a bicistronic transcript or was present as a monocistronic transcript that was also highly induced under the same conditions. The role of LolA, a prokaryotic periplasmic lipoprotein-specific molecular chaperone in the thiol/disulfide redox system, is unknown. A trxB deletion mutant was more sensitive to the effects of diamide and oxygen than the parent strain. In addition, the trxB mutant was unable to grow in culture media without addition of a reductant. Furthermore, the trxB mutant was not able to induce intraabdominal abscess formation in a mouse model, whereas the parent strain was. Taken together, these data strongly suggest that TrxB/Trx is the major, if not the sole, thiol/disulfide redox system in this anaerobe required for survival and abscess formation in a peritoneal cavity infection model.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rocha</LastName>
<ForeName>Edson R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology & Immunology, East Carolina University Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tzianabos</LastName>
<ForeName>Arthur O</ForeName>
<Initials>AO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>C Jeffrey</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R56 AI040588</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI068659</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI040588</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI068659</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI40588</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010545">Peroxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>10465-78-8</RegistryNumber>
<NameOfSubstance UI="D003958">Diamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018784" MajorTopicYN="N">Abdominal Abscess</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001442" MajorTopicYN="N">Bacteroides Infections</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001441" MajorTopicYN="N">Bacteroides fragilis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003958" MajorTopicYN="N">Diamide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010545" MajorTopicYN="N">Peroxides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17873045</ArticleId>
<ArticleId IdType="pii">JB.00714-07</ArticleId>
<ArticleId IdType="doi">10.1128/JB.00714-07</ArticleId>
<ArticleId IdType="pmc">PMC2168685</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2002;347:286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2003 Aug;5(4):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2000 Dec 1;193(1):149-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11094294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Jun;149(Pt 6):1513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1988 Mar;34(3):352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3046726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 29;427(6973):441-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1990 Jun;22(3):451-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2202727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Dec;178(23):6895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:71-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 Jun;158(3):1061-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6373736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1975 Feb;1(2):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1176601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Sep;74(9):5140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16926406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Mar;39(6):1562-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 1977 Nov;30(11):1762-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">920635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1979 Jan;139(1):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">108340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Mar;133(3):1126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">417060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Feb;184(4):895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:333-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Sep 25;528(1-3):193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1974 Aug;28(2):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1995 Nov;34(3):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8825374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 1999;10(2-3):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10609892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2002;46:111-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Surg. 1991 Mar;213(3):253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1998406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(7):1869-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(1):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1961698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Oct 16;316:167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Mar;151(Pt 3):841-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15758230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Nov;179(22):7033-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1992 Mar;27(2):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1615064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):157-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1992 Mar;14(3):720-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1562664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2006 Jan;89(1):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Infect Dis. 1985 Mar-Apr;7(2):151-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3890095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12063265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Feb 12;41(6):1990-2001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 4;307(5714):1463-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jan;186(2):326-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14702300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Sep;182(18):5059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10960088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1993 Jun;16 Suppl 4:S190-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8324117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Aug;57(3):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Oct 12;287(5):1125-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11587539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(2):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Jul 5;376(1):107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16580795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Mar;144 ( Pt 3):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Jul;69(7):4342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11401972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anaerobe. 2003 Aug;9(4):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16887706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Smith, C Jeffrey" sort="Smith, C Jeffrey" uniqKey="Smith C" first="C Jeffrey" last="Smith">C Jeffrey Smith</name>
<name sortKey="Tzianabos, Arthur O" sort="Tzianabos, Arthur O" uniqKey="Tzianabos A" first="Arthur O" last="Tzianabos">Arthur O. Tzianabos</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Rocha, Edson R" sort="Rocha, Edson R" uniqKey="Rocha E" first="Edson R" last="Rocha">Edson R. Rocha</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17873045
   |texte=   Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17873045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020