Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.

Identifieur interne : 000B46 ( Main/Exploration ); précédent : 000B45; suivant : 000B47

Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.

Auteurs : Jeffrey M. Dick [États-Unis]

Source :

RBID : pubmed:19615086

Descripteurs français

English descriptors

Abstract

BACKGROUND

Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. PRESENTATION AND IMPLICATIONS OF THE HYPOTHESIS: I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments.

TESTING THE HYPOTHESIS

Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments.

RESULTS

The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion - cytoplasm - nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages of proteins in known complexes.

CONCLUSION

The results of these calculations and tests suggest that a tendency toward a metastable energy minimum could underlie some organizational links between the the chemical thermodynamic properties of proteins and subcellular chemical environments. Future models of this kind will benefit from consideration of additional thermodynamic variables together with more detailed subcellular observations.


DOI: 10.1186/1752-0509-3-75
PubMed: 19615086
PubMed Central: PMC2734844


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Dick, Jeffrey M" sort="Dick, Jeffrey M" uniqKey="Dick J" first="Jeffrey M" last="Dick">Jeffrey M. Dick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Earth and Planetary Science, University of California, 307 McCone Hall, #4767 Berkeley, CA 94720-4767, USA. jedick@berkeley.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Planetary Science, University of California, 307 McCone Hall, #4767 Berkeley, CA 94720-4767</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19615086</idno>
<idno type="pmid">19615086</idno>
<idno type="doi">10.1186/1752-0509-3-75</idno>
<idno type="pmc">PMC2734844</idno>
<idno type="wicri:Area/Main/Corpus">000A91</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A91</idno>
<idno type="wicri:Area/Main/Curation">000A91</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A91</idno>
<idno type="wicri:Area/Main/Exploration">000A91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Dick, Jeffrey M" sort="Dick, Jeffrey M" uniqKey="Dick J" first="Jeffrey M" last="Dick">Jeffrey M. Dick</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Earth and Planetary Science, University of California, 307 McCone Hall, #4767 Berkeley, CA 94720-4767, USA. jedick@berkeley.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Earth and Planetary Science, University of California, 307 McCone Hall, #4767 Berkeley, CA 94720-4767</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC systems biology</title>
<idno type="eISSN">1752-0509</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrochemical Techniques (MeSH)</term>
<term>Intracellular Space (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Systems Biology (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie des systèmes (MeSH)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Techniques électrochimiques (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxygen</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Space</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espace intracellulaire</term>
<term>Oxygène</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrochemical Techniques</term>
<term>Oxidation-Reduction</term>
<term>Systems Biology</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie des systèmes</term>
<term>Oxydoréduction</term>
<term>Techniques électrochimiques</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. PRESENTATION AND IMPLICATIONS OF THE HYPOTHESIS: I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>TESTING THE HYPOTHESIS</b>
</p>
<p>Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion - cytoplasm - nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages of proteins in known complexes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The results of these calculations and tests suggest that a tendency toward a metastable energy minimum could underlie some organizational links between the the chemical thermodynamic properties of proteins and subcellular chemical environments. Future models of this kind will benefit from consideration of additional thermodynamic variables together with more detailed subcellular observations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19615086</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1752-0509</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC systems biology</Title>
<ISOAbbreviation>BMC Syst Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1752-0509-3-75</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. PRESENTATION AND IMPLICATIONS OF THE HYPOTHESIS: I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments.</AbstractText>
<AbstractText Label="TESTING THE HYPOTHESIS" NlmCategory="METHODS">Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion - cytoplasm - nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages of proteins in known complexes.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The results of these calculations and tests suggest that a tendency toward a metastable energy minimum could underlie some organizational links between the the chemical thermodynamic properties of proteins and subcellular chemical environments. Future models of this kind will benefit from consideration of additional thermodynamic variables together with more detailed subcellular observations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dick</LastName>
<ForeName>Jeffrey M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Earth and Planetary Science, University of California, 307 McCone Hall, #4767 Berkeley, CA 94720-4767, USA. jedick@berkeley.edu</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Syst Biol</MedlineTA>
<NlmUniqueID>101301827</NlmUniqueID>
<ISSNLinking>1752-0509</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055664" MajorTopicYN="N">Electrochemical Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="Y">Systems Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="Y">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19615086</ArticleId>
<ArticleId IdType="pii">1752-0509-3-75</ArticleId>
<ArticleId IdType="doi">10.1186/1752-0509-3-75</ArticleId>
<ArticleId IdType="pmc">PMC2734844</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1997 Jan 16;385(6613):265-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9000076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Aug 8;16(15):1538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16890529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Feb 28;266(3):594-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9067612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1999 Apr;9(2):244-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2005 Dec;5(12):1215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Feb;4(2):184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1995 Jan 15;38(2):165-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7765807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Dec;3(6):1619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Dec;3(12):e248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18159940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2000;192:223-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10553281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1996 Oct 21;182(4):469-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2007 May;64(5):558-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17476453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 5;274(10):6366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10037727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Jun;6(12):3494-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16705750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 1995 Feb;27(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7767780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1980 Nov 7;87(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7206754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2007 Nov;72(3):323-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1996 Sep;153(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8694906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2004 Jan;5(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geochem Trans. 2008 Oct 03;9:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18834534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jun 15;364(Pt 3):617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11958675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Feb;4(2):392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 23;3(3):e52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Apr;14(4):1610-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12686613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Feb 21;148(4):635-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10684247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Nov 2;143(3):737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9813094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 May 4;129(3):485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17442384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2006;46:215-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16402904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1958 Feb;27(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13522724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 9;431(7005):221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15329733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16429126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):13044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1985;1:115-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3916315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Aug;274(16):4287-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Imaging. 1995;13(2):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7739369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 28;282(39):28619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003 Feb;56(2):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12574861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Feb 20;276(2):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2005;21:411-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2000 Nov;130(11):2739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11053515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2000 Mar;7(3):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geochim Cosmochim Acta. 1997 Mar;61(5):907-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11541225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2005 Sep;46(9):1991-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15995173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1999 Jan 1;59(1):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Feb;12(2):138-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):7027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2674942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Dick, Jeffrey M" sort="Dick, Jeffrey M" uniqKey="Dick J" first="Jeffrey M" last="Dick">Jeffrey M. Dick</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19615086
   |texte=   Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19615086" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020